Skip to main content
Log in

Computational investigation on the intramolecular resonance-inhibited hydrogen bonding: a new type of interaction versus the RAHB model

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

A new type of intramolecular interaction is introduced by choosing a tautomer of β-aminoacrolein as a model. The term “resonance-inhibited hydrogen bond (RIHB)” is considered to describe this interaction. The intramolecular hydrogen bond (IMHB) energy values are estimated at the B3LYP and MP2 levels of theory. The QTAIM analysis and other descriptors are employed to corroborate the obtained results. According to the results, one predicts that the IMHB strength in the RIHB benchmark system is higher than in its corresponding saturated analog, which is attributed to the planarity imposed on the molecule framework by the unsaturation. Fixing the planarity parameter during the comparison, we observe that the reverse resonance decreases the IMHB strength compared to the saturated corresponding counterpart. All of the measured parameters are compared to those of the resonance-assisted hydrogen bond analog revealing the important role of the resonance direction in strengthening or weakening of the IMHB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gilli G, Gilli P (2000) J Mol Struct 552:1

    Article  CAS  Google Scholar 

  2. Gilli P, Bertolasi V, Ferretti V, Gilli G (1994) J Am Chem Soc 116:909

    Article  CAS  Google Scholar 

  3. Gilli P, Bertolasi V, Ferretti V, Gilli G (2000) J Am Chem Soc 122:10405

    Article  CAS  Google Scholar 

  4. Gilli P, Bertolasi V, Pretto L, Antonín L, Gilli G (2002) J Am Chem Soc 124:13554

    Article  CAS  Google Scholar 

  5. Gilli P, Bertolasi V, Pretto L, Ferretti V, Gilli G (2004) J Am Chem Soc 126:3845

    Article  CAS  Google Scholar 

  6. Gilli P, Gilli G (2010) J Mol Struct 972:2

    Article  CAS  Google Scholar 

  7. Jeffrey GA, Saenger W (1991) Hydrogen bonding in biological structures. Springer, New York

    Book  Google Scholar 

  8. Huggins ML (1936) J Org Chem 1:407

    Article  CAS  Google Scholar 

  9. Gilli G, Bellucci F, Ferretti V, Bertolasi V (1023) J Am Chem Soc 1989:111

    Google Scholar 

  10. Bertolasi V, Gilli P, Ferretti V, Gilli G (1991) J Am Chem Soc 113:4917

    Article  CAS  Google Scholar 

  11. Beck JF, Mo Y (2007) J Comput Chem 28:455

    Article  CAS  Google Scholar 

  12. Alkorta I, Elguero J, Mό O, Yáñez M, Del Bene JE (2004) Mol Phys 102:2563

    Article  CAS  Google Scholar 

  13. Alkorta I, Elguero J, Mό O, Yáñez M, Del Bene J (2005) Chem Phys Lett 411:411

    Article  CAS  Google Scholar 

  14. Sanz P, Mό O, Yáñez M, Elguero J (2007) J Phys Chem A 111:3585

    Article  CAS  Google Scholar 

  15. Sanz P, Mό O, Yáñez M, Elguero J (1950) Chem Phys Chem 2007:8

    Google Scholar 

  16. Sanz P, Mό O, Yáñez M, Elguero J (2008) Chem Eur J 14:4225

    Article  CAS  Google Scholar 

  17. Sanz P, Mό O, Yáñez M, Elguero J (2009) Phys Chem Chem Phys 11:762

    Article  CAS  Google Scholar 

  18. Nowroozi A, Sarhadinia S, Masumian E, Nakhaei E (2014) Struct Chem 25:1359

    Article  CAS  Google Scholar 

  19. Bertolasi V, Pretto L, Gilli G, Gilli P (2006) Acta Crystallogr B 62:850

    Article  Google Scholar 

  20. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JJA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, akajima T, Honda Y, Kitao O, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin J, Cammi R, Pomelli C, Ochterski J, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) GAUSSIAN03 (Revision E.01). Gaussian, Inc., Wallingford

    Google Scholar 

  21. Becke AD (1993) J Chem Phys 98:1372

    Article  CAS  Google Scholar 

  22. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  23. Lozynski M, Rusinska-Roszak D, Mack H-G (1998) J Phys Chem A 102:2899

    Article  CAS  Google Scholar 

  24. Alabugin IV, Manoharan M, Peabody S, Weinhold F (2003) J Am Chem Soc 125:5973

    Article  CAS  Google Scholar 

  25. Rabuck AD, Scuseria GE (2000) Theor Chem Acc 104:439

    Article  CAS  Google Scholar 

  26. González L, Mó O, Yáñez M, Elguero J (1996) J Mol Struct (THEOCHEM) 371:1

    Article  Google Scholar 

  27. González L, Mó O, Yáñez M (1997) J Phys Chem A 101:9710

    Article  Google Scholar 

  28. Mó O, Yáñez M, Elguero J (1997) J Chem Phys 107:3592

    Article  Google Scholar 

  29. González L, Mó O, Yáñez M (1997) J Comput Chem 18:1124

    Article  Google Scholar 

  30. González L, Mó O, Yáñez M (1998) J Chem Phys 109:139

    Article  Google Scholar 

  31. Woon DE, Dunning TH Jr (1993) J Chem Phys 98:1358

    Article  CAS  Google Scholar 

  32. Foresman JB, Frisch A (1996) Exploring chemistry with electronic structure methods, 2nd edn. Gaussian Inc, Pittsburgh

    Google Scholar 

  33. Schuster P, Zundel G (1976) The hydrogen bond, recent development in theory and experiment. Nourth-Holland, Amesterdam

    Google Scholar 

  34. Schuster P (1969) Mh Chem 100:2084

    CAS  Google Scholar 

  35. Buemi G, Zuccarello F (2002) J Mol Struct (THEOCHEM) 581:71

    Article  CAS  Google Scholar 

  36. Espinosa E, Molins E, Lecomte C (1998) Chem Phys Lett 285:170

    Article  CAS  Google Scholar 

  37. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, New York

    Google Scholar 

  38. Filarowski A, Majerz I (2008) J Phys Chem A 112:3119

    Article  CAS  Google Scholar 

  39. Shainyan BA, Chipanina NN, Aksamentova TN, Oznobikhina LP, Rosentsveig GN, Rosentsveig IB (2010) Tetrahedron 66:8551

    Article  CAS  Google Scholar 

  40. Rozas I, Alkorta I, Elguero J (2000) J Am Chem Soc 122:11154

    Article  CAS  Google Scholar 

  41. Biegler-König F, Schönbohm J, Bayles D (2001) AIM2000- A program to analyze and visualize atoms. University of Applied Science, Bielefeld

  42. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899

    Article  CAS  Google Scholar 

  43. Glandening DE, Reed AE, Carpenter JE, Weinhold F (2013) NBO, Version 3.1, Theoretical Chemistry Institute, University of Wisconsin, Madison, Wisconsin

  44. McWeeny R (1028) Phys Rev 1962:126

    Google Scholar 

  45. London F (1937) J Phys Radium 8:397

    Article  CAS  Google Scholar 

  46. Alkorta I, Elguero J (1998) Struct Chem 9:187

    Article  CAS  Google Scholar 

  47. Jabłoński M (2010) Chem Phys 376:76

    Article  Google Scholar 

  48. Kovaccvic B, Glasovac Z, Maksic ZB (2002) J Phys Org Chem 15:765

    Article  Google Scholar 

  49. Kovaccvic B, Maksic ZB (2002) Chem Eur J 8:1694

    Article  Google Scholar 

  50. Kovaccvic B, Maksic ZB, Vianello R, Primorac M (2002) New J Chem 26:1329

    Article  Google Scholar 

  51. Raab V, Harms M, Sundermeyer J, Kovaccvic B, Maksic ZB (2003) J Org Chem 68:8790

    Article  CAS  Google Scholar 

  52. Kovaccvic B, Maksic ZB (2006) Chem. Commun 14:1524–1526

    Article  Google Scholar 

  53. Koch W, Frenking G, Gauss J, Cremer D, Collins JR (1987) J Am Chem Soc 109:5917

    Article  CAS  Google Scholar 

  54. Berglund B, Vaughan RW (1980) J Chem Phys 73:2037

    Article  CAS  Google Scholar 

  55. Weinhold F (1997) J Mol Struct (THEOCHEM) 181:398

    Google Scholar 

  56. Gilli G, Gilli P (2009) The nature of hydrogen bond. Oxford University Press, Oxford

    Book  Google Scholar 

  57. Pauling L (1947) J Am Chem Soc 69:542

    Article  CAS  Google Scholar 

  58. Pauling L (1960) The nature of the chemical bond, 3rd edn. Cornell University Press, Ithaca, NY

    Google Scholar 

  59. Peter L (1986) J Chem Educ 63:123

    Article  CAS  Google Scholar 

  60. Gilli P, Bertolasi V, Pretto L, Lyčka A, Gilli G (2002) J Am Chem Soc 124:13554

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank University of Sistan and Baluchestan (USB) for the financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehsan Masumian.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 39 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masumian, E., Nowroozi, A. Computational investigation on the intramolecular resonance-inhibited hydrogen bonding: a new type of interaction versus the RAHB model. Theor Chem Acc 134, 82 (2015). https://doi.org/10.1007/s00214-015-1683-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-015-1683-x

Keywords

Navigation