Skip to main content
Log in

Identification of the best DFT functionals for a reliable prediction of lignin vibrational properties

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Lignin is the most abundant aromatic plant polymer on earth. Useful information on its structure and interactions is gained by vibrational spectroscopy and relies on the quality of band assignments. B3LYP predictions were recently shown to support band assignments. Further progress calls for a comprehensive study of the quality of available theoretical methods in relation to the task of predicting lignin vibrational properties. The present study examined more than 50 functionals for prediction of IR vibrations of an appropriate lignin model. Based on a basis set incompleteness study, the pc-2 basis set was used. B98, X3LYP and B97-1 were the overall best-performing functionals, and “fingerprint” band positions were predicted by single-factor scaling of harmonic frequencies to an average error of ±3 cm−1 by optimized scaling factors of 1.017, 1.021 and 1.016, respectively. Their performance using instead explicit anharmonic correction was slightly worse giving an error of ca. ±5 cm−1. The X3LYP and B97-1 functionals offer also good description of hydrogen bonding. Error compensation from, e.g., insufficient treatment of solvation is likely to affect these results, and thus at this stage no single functional stands out. These results provide a needed basis for further theoretical developments in relation to vibrational assignments of Infrared and Raman spectra of lignin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Azadi P, Inderwildi OR, Farnood R, King DA (2013) Liquid fuels, hydrogen and chemicals from lignin: a critical review. Renew Sustain Energy Rev 21:506–523

    Article  CAS  Google Scholar 

  2. Eudes A, Liang Y, Mitra P, Loque D (2014) Lignin bioengineering. Curr Opin Biotechnol 26:189–198

    Article  CAS  Google Scholar 

  3. Kang SM, Li XL, Fan J, Chang J (2013) Hydrothermal conversion of lignin: a review. Renew Sustain Energy Rev 27:546–558

    Article  CAS  Google Scholar 

  4. Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F et al (2014) Lignin valorization: improving lignin processing in the biorefinery. Science 344:709

    Article  CAS  Google Scholar 

  5. Bonawitz ND, Chapple C (2010) The genetics of lignin biosynthesis: connecting genotype to phenotype. In: Campbell A, Lichten M, Schupbach G (eds) Annual review of genetics, vol 44. Annual Reviews, Palo Alto, pp 337–363

    Google Scholar 

  6. Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W (2010) Lignin biosynthesis and structure. Plant Physiol 153:895–905

    Article  CAS  Google Scholar 

  7. Zhao Q, Dixon RA (2011) Transcriptional networks for lignin biosynthesis: more complex than we thought? Trends Plant Sci 16:227–233

    Article  CAS  Google Scholar 

  8. Garrigues S, de la Guardia M (2013) Non-invasive analysis of solid samples. Trac Trends Anal Chem 43:161–173

    Article  CAS  Google Scholar 

  9. Lupoi JS, Singh S, Simmons BA, Henry RJ (2014) Assessment of lignocellulosic biomass using analytical spectroscopy: an evolution to high-throughput techniques. Bioenerg Res 7:1–23

    Article  CAS  Google Scholar 

  10. Xu F, Yu JM, Tesso T, Dowell F, Wang DH (2013) Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: a mini-review. Appl Energy 104:801–809

    Article  CAS  Google Scholar 

  11. Agarwal UP (2006) Raman imaging to investigate ultrastructure and composition of plant cell walls: distribution of lignin and cellulose in black spruce wood (Picea mariana). Planta 224:1141–1153

    Article  CAS  Google Scholar 

  12. Fackler K, Thygesen LG (2013) Microspectroscopy as applied to the study of wood molecular structure. Wood Sci Technol 47:203–222

    Article  CAS  Google Scholar 

  13. Gierlinger N, Keplinger T, Harrington M (2012) Imaging of plant cell walls by confocal Raman microscopy. Nat Protoc 7:1694–1708

    Article  CAS  Google Scholar 

  14. Gierlinger N, Schwanninger M (2007) The potential of Raman microscopy and Raman imaging in plant research. Spectrosc Int J 21:69–89

    Article  CAS  Google Scholar 

  15. Halttunen M, Vyorykka J, Hortling B, Tamminen T, Batchelder D et al (2001) Study of residual lignin in pulp by UV resonance Raman spectroscopy. Holzforschung 55:631–638

    Article  CAS  Google Scholar 

  16. Barsberg S, Matousek P, Towrie M, Jorgensen H, Felby C (2006) Lignin radicals in the plant cell wall probed by Kerr-gated resonance Raman spectroscopy. Biophys J 90:2978–2986

    Article  CAS  Google Scholar 

  17. Barsberg S, Matousek P, Towrie M (2005) Structural analysis of lignin by resonance Raman spectroscopy. Macromol Biosci 5:743–752

    Article  CAS  Google Scholar 

  18. Faix O (1991) Classification of lignins from different botanical origins by FT-IR spectroscopy. Holzforschung 45:21–27

    Article  CAS  Google Scholar 

  19. Faix O, Beinhoff O (1988) FTIR spectra of milled wood lignins and lignin polymer models (DHPS) with enhanced resolution obtained by deconvolution. J Wood Chem Technol 8:505–522

    Article  CAS  Google Scholar 

  20. Agarwal UP, McSweeny JD, Ralph SA (2011) FT-Raman investigation of milled-wood lignins: softwood, hardwood, and chemically modified black spruce lignins. J Wood Chem Technol 31:324–344

    Article  CAS  Google Scholar 

  21. Agarwal UP, Ralph SA (1997) FT-Raman spectroscopy of wood: identifying contributions of lignin and carbohydrate polymers in the spectrum of black spruce (Picea mariana). Appl Spectrosc 51:1648–1655

    Article  CAS  Google Scholar 

  22. Gilarranz MA, Rodriguez F, Oliet M, Garcia J, Alonso V (2001) Phenolic OH group estimation by FTIR and UV spectroscopy. Application to organosolv lignins. J Wood Chem Technol 21:387–395

    Article  CAS  Google Scholar 

  23. Huang Y, Wang LS, Chao YS, Nawawi DS, Akiyama T et al (2012) Analysis of lignin aromatic structure in wood based on the IR spectrum. J Wood Chem Technol 32:294–303

    Article  CAS  Google Scholar 

  24. Karmanov AP, Derkacheva OY (2013) Application of fourier transform infrared spectroscopy for the study of lignins of herbaceous plants. Rus J Bioorg Chem 39:677–685

    Article  CAS  Google Scholar 

  25. Saariaho AM, Jaaskelainen AS, Nuopponen M, Vuorinen T (2003) Ultra violet resonance Raman spectroscopy in lignin analysis: determination of characteristic vibrations of p-hydroxyphenyl, guaiacyl, and syringyl lignin structures. Appl Spectrosc 57:58–66

    Article  CAS  Google Scholar 

  26. Sun L, Varanasi P, Yang F, Loque D, Simmons BA et al (2012) Rapid determination of syringyl: guaiacyl ratios using FT-Raman spectroscopy. Biotechnol Bioeng 109:647–656

    Article  CAS  Google Scholar 

  27. Janesko BG (2014) Acid-catalyzed hydrolysis of lignin beta-O-4 linkages in ionic liquid solvents: a computational mechanistic study. Phys Chem Chem Phys 16:5423–5433

    Article  CAS  Google Scholar 

  28. Kim S, Chmely SC, Nimos MR, Bomble YJ, Foust TD et al (2011) Computational study of bond dissociation enthalpies for a large range of native and modified lignins. J Phys Chem Lett 2:2846–2852

    Article  CAS  Google Scholar 

  29. Parthasarathi R, Romero RA, Redondo A, Gnanakaran S (2011) Theoretical study of the remarkably diverse linkages in lignin. J Phys Chem Lett 2:2660–2666

    Article  CAS  Google Scholar 

  30. Sangha AK, Davison BH, Standaert RF, Davis MF, Smith JC et al (2014) Chemical factors that control lignin polymerization. J Phys Chem B 118:164–170

    Article  CAS  Google Scholar 

  31. Sangha AK, Parks JM, Standaert RF, Ziebell A, Davis M et al (2012) Radical coupling reactions in lignin synthesis: a density functional theory study. J Phys Chem B 116:4760–4768

    Article  CAS  Google Scholar 

  32. Elder T, Beste A (2014) Density functional theory study of the concerted pyrolysis mechanism for lignin models. Energy Fuels 28:5229–5235

    Article  CAS  Google Scholar 

  33. Larsen KL, Barsberg S (2010) Theoretical and Raman spectroscopic studies of phenolic lignin model monomers. J Phys Chem B 114:8009–8021

    Article  CAS  Google Scholar 

  34. Laury ML, Carlson MJ, Wilson AK (2012) Vibrational frequency scale factors for density functional theory and the polarization consistent basis sets. J Comput Chem 33:2380–2387

    Article  CAS  Google Scholar 

  35. Scott AP, Radom L (1996) Harmonic vibrational frequencies: an evaluation of Hartree-Fock, Moller-Plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors. J Phys Chem 100:16502–16513

    Article  CAS  Google Scholar 

  36. Sinha P, Boesch SE, Gu CM, Wheeler RA, Wilson AK (2004) Harmonic vibrational frequencies: scaling factors for HF, B3LYP, and MP2 methods in combination with correlation consistent basis sets. J Phys Chem A 108:9213–9217

    Article  CAS  Google Scholar 

  37. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  38. Zvereva EE, Shagidullin AR, Katsyuba SA (2011) Ab initio and DFT predictions of infrared intensities and Raman activities. J Phys Chem A 115:63–69

    Article  CAS  Google Scholar 

  39. Jimenez-Hoyos CA, Janesko BG, Scuseria GE (2008) Evaluation of range-separated hybrid density functionals for the prediction of vibrational frequencies, infrared intensities, and Raman activities. Phys Chem Chem Phys 10:6621–6629

    Article  CAS  Google Scholar 

  40. Jensen F (2001) Polarization consistent basis sets: principles. J Chem Phys 115:9113–9125

    Article  CAS  Google Scholar 

  41. Jensen F (2002) Polarization consistent basis sets. II. Estimating the Kohn-Sham basis set limit. J Chem Phys 116:7372–7379

    Article  CAS  Google Scholar 

  42. Jensen F (2002) Polarization consistent basis sets. III. The importance of diffuse functions. J Chem Phys 117:9234–9240

    Article  CAS  Google Scholar 

  43. Jensen F (2003) Polarization consistent basis sets. IV. The basis set convergence of equilibrium geometries, harmonic vibrational frequencies, and intensities. J Chem Phys 118:2459–2463

    Article  CAS  Google Scholar 

  44. Zhao Y, Schultz NE, Truhlar DG (2006) Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. J Chem Theory Comput 2:364–382

    Article  Google Scholar 

  45. Hohenstein EG, Chill ST, Sherrill CD (2008) Assessment of the performance of the M05-2X and M06-2X exchange-correlation functionals for noncovalent interactions in biomolecules. J Chem Theory Comput 4:1996–2000

    Article  CAS  Google Scholar 

  46. Cappelli C, Monti S, Scalmani G, Barone V (2010) On the calculation of vibrational frequencies for molecules in solution beyond the harmonic approximation. J Chem Theory Comput 6:1660–1669

    Article  CAS  Google Scholar 

  47. Barone V, Baiardi A, Biczysko M, Bloino J, Cappelli C et al (2012) Implementation and validation of a multi-purpose virtual spectrometer for large systems in complex environments. Phys Chem Chem Phys 14:12404–12422

    Article  CAS  Google Scholar 

  48. Barone V, Biczysko M, Bloino J (2014) Fully anharmonic IR and Raman spectra of medium-size molecular systems: accuracy and interpretation. Phys Chem Chem Phys 16:1759–1787

    Article  CAS  Google Scholar 

  49. Barone V, Biczysko M, Bloino J, Puzzarini C (2013) Characterization of the elusive conformers of glycine from state-of-the-art structural, thermodynamic, and spectroscopic computations: theory complements experiment. J Chem Theory Comput 9:1533–1547

    Article  CAS  Google Scholar 

  50. Xu X, Goddard WA (2004) The X3LYP extended density functional for accurate descriptions of nonbond interactions, spin states, and thermochemical properties. Proc Natl Acad Sci USA 101:2673–2677

    Article  CAS  Google Scholar 

  51. Rao L, Ke HW, Fu G, Xu X, Yan YJ (2009) Performance of several density functional theory methods on describing hydrogen-bond interactions. J Chem Theory Comput 5:86–96

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Søren Barsberg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barsberg, S. Identification of the best DFT functionals for a reliable prediction of lignin vibrational properties. Theor Chem Acc 134, 33 (2015). https://doi.org/10.1007/s00214-015-1638-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-015-1638-2

Keywords

Navigation