Skip to main content
Log in

An integrating strategy of AMBER force field parameters for the photoinduced copper nucleases

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

In this research study, we develop a theoretical method for the determination of the AMBER force field parameters that are associated with the ten representative photoinduced copper nucleases. First, the ten nuclease compounds were grouped into three classes based on the same decisive ligands and similar ligand environments. The AMBER force field parameters around the central coppers for these compounds were calculated using the three-point method. Then, three sets of the ranges of force field parameters for the three classes of compounds were, respectively, summarized by taking into account the structural and ligand-environmental similarity in a same class. The ranges of force field parameters were successfully applied in the molecular mechanic calculations and the molecular dynamics simulations for some nucleases and nuclease–DNA systems. The influences of structural, electronic, and polarized factors on the ranges of force field parameters were discussed for the three classes of compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sigman DS (1986) Acc Chem Res 19:180–186

    Article  CAS  Google Scholar 

  2. Sigman DS, Bruice TW, Mazumder A, Sutton CL (1993) Acc Chem Res 26:98–104

    Article  CAS  Google Scholar 

  3. Sigman DS, Mazumder A, Perrin DM (1993) Chem Rev 93:2295–2316

    Article  CAS  Google Scholar 

  4. Barton JK (1986) Science 233:727–734

    Article  CAS  Google Scholar 

  5. Pyle AM, Barton JK (1990) In: Lippard SJ (ed) Progress in inorganic chemistry: bioinorganic chemistry, vol 38. Wiley, New York, pp 413–475

    Chapter  Google Scholar 

  6. Delaney S, Pascaly M, Bhattacharya PK, Han K, Barton JK (2002) Inorg Chem 41:1966–1974

    Article  CAS  Google Scholar 

  7. Pogozelski WK, Tullius TD (1998) Chem Rev 98:1089–1108

    Article  CAS  Google Scholar 

  8. Armitage B (1998) Chem Rev 98:1171–1200

    Article  CAS  Google Scholar 

  9. Pratviel G, Bernadou J, Meunier B (1998) Adv Inorg Chem 45:251–312

    Article  CAS  Google Scholar 

  10. Mcmillin DR, Mcnett KM (1998) Chem Rev 98:1201–1220

    Article  Google Scholar 

  11. Henderson BW, Busch TM, Vaughan LA, Frawley NP, Babich D, Sosa TA, Zollo JD, Dee AS, Cooper MT, Bellnier DA (2000) Cancer Res 60:525–529

    CAS  Google Scholar 

  12. Sessler JL, Hemmi G, Mody TD, Murai T, Burrell A, Young SW (1994) Acc Chem Res 27:43–50

    Article  CAS  Google Scholar 

  13. Ackroyd R, Kelty C, Brown N, Reed M (2001) Photochem Photobiol 74:656–669

    Article  CAS  Google Scholar 

  14. Henderson BW, Dougherty TJ (1992) Photochem Photobiol 55:145–157

    Article  CAS  Google Scholar 

  15. Sternberg ED, Dolphin D, Brückner C (1998) Tetrahedron 54:4151–4202

    Article  CAS  Google Scholar 

  16. Derosa MC, Crutchley RJ (2002) Coord Chem Rev 233:351–371

    Article  Google Scholar 

  17. Dhar S, Nethaji M, Chakravarty AR (2005) Inorg Chem 44:8876–8883

    Article  CAS  Google Scholar 

  18. Dhar S, Senapati D, Reddy PaN, Das PK, Chakravarty AR (2003) Chem Commun (19):2452–2453

  19. Dhar S, Chakravarty AR (2003) Inorg Chem 42:2483–2485

    Article  CAS  Google Scholar 

  20. Dhar S, Senapati D, Das PK, Chattopadhyay P, Nethaji M, Chakravarty AR (2003) J Am Chem Soc 125:12118–12124

    Article  CAS  Google Scholar 

  21. Toshima K, Takano R, Ozawa T, Matsumura S (2002) Chem Commun (3):212–213

  22. Bonnett R (1995) Chem Soc Rev 24:19–33

    Article  CAS  Google Scholar 

  23. Pogue BW, Hasan T (2003) Opt Photonics News 14:36–43

    Article  Google Scholar 

  24. Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, Moan J, Peng Q (1998) J Natl Cancer I(90):889–905

    Article  Google Scholar 

  25. Pandey RK (2000) J Porphyr Phthalocya 4:368–373

    Article  CAS  Google Scholar 

  26. Roy S, Saha S, Majumdar R, Dighe RR, Chakravarty AR (2010) Polyhedron 29:2787–2794

    Article  CAS  Google Scholar 

  27. Patra AK, Roy S, Chakravarty AR (2009) Inorg Chim Acta 362:1591–1599

    Article  CAS  Google Scholar 

  28. Patra AK, Bhowmick T, Roy S, Ramakumar S, Chakravarty AR (2009) Inorg Chem 48:2932–2943

    Article  CAS  Google Scholar 

  29. Maity B, Roy M, Chakravarty AR (2008) J Organomet Chem 693:1395–1399

    Article  CAS  Google Scholar 

  30. Maity B, Roy M, Saha S, Chakravarty AR (2009) Organometallics 28:1495–1505

    Article  CAS  Google Scholar 

  31. Roy S, Saha S, Majumdar R, Dighe RR, Chakravarty AR (2009) Inorg Chem 48:9501–9509

    Article  CAS  Google Scholar 

  32. Portella G, Germann MW, Hud NV, Orozco M (2014) J Am Chem Soc 136:3075–3086

    Article  CAS  Google Scholar 

  33. Zhu Y, Wang Y, Chen G (2009) J Phys Chem B 113:839–848

    Article  CAS  Google Scholar 

  34. Arjmand F, Yousuf I, Hadda TB, Toupet L (2014) Eur J Med Chem 81:76–88

    Article  CAS  Google Scholar 

  35. Alder BJ, Wainwright TE (1959) J Chem Phys 31:459–466

    Article  CAS  Google Scholar 

  36. Rahman A (1964) Phys Rev 136:A405–A411

    Article  Google Scholar 

  37. Wang Y, Zhu Y, Wang Y, Chen G (2011) J Mol Recognit 24:981–994

    Article  Google Scholar 

  38. Yue H, Zhu Y, Wang Y, Chen G (2010) BMC Struct Biol 10:35

    Article  Google Scholar 

  39. Oda A, Yamaotsu N, Hirono S (2005) J Comput Chem 26:818–826

    Article  CAS  Google Scholar 

  40. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) J Am Chem Soc 117:5179–5197

    Article  CAS  Google Scholar 

  41. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) J Comput Chem 25:1157–1174

    Article  CAS  Google Scholar 

  42. Yang L, Tan C-H, Hsieh M-J, Wang J, Duan Y, Cieplak P, Caldwell J, Kollman PA, Luo R (2006) J Phys Chem B 110:13166–13176

    Article  CAS  Google Scholar 

  43. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) J Comput Chem 4:187–217

    Article  CAS  Google Scholar 

  44. Mackerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha SA (1998) J Phys Chem B 102:3586–3616

    Article  CAS  Google Scholar 

  45. Berendsen HJC, Van Der Spoel D, Van Drunen R (1995) Comput Phys Commun 91:43–56

    Article  CAS  Google Scholar 

  46. Lifson S, Warshel A (2003) J Chem Phys 49:5116–5129

    Article  Google Scholar 

  47. Levitt M, Hirshberg M, Sharon R, Daggett V (1995) Comput Phys Commun 91:215–231

    Article  CAS  Google Scholar 

  48. Rappé AK, Casewit CJ, Colwell KS (1992) Goddard Iii WA, Skiff WM. J Am Chem Soc 114:10024–10035

    Article  Google Scholar 

  49. Comba P, Remenyi R (2003) Coord Chem Rev 238:9–20

    Article  Google Scholar 

  50. Allinger NL (1977) J Am Chem Soc 99:8127–8134

    Article  CAS  Google Scholar 

  51. Momany FA, Bowers CY, Reynolds GA, Chang D, Hong A, Newlander K (1981) Endocrinology 108:31–39

    Article  CAS  Google Scholar 

  52. Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL (2001) J Phys Chem B 105:6474–6487

    Article  CAS  Google Scholar 

  53. Ponder JW, Wu C, Ren P, Pande VS, Chodera JD, Schnieders MJ, Haque I, Mobley DL, Lambrecht DS, Distasio RA Jr (2010) J Phys Chem B 114:2549–2564

    Article  CAS  Google Scholar 

  54. Weiner SJ, Kollman PA, Case DA, Singh UC, Ghio C, Alagona G, Profeta S, Weiner P (1984) J Am Chem Soc 106:765–784

    Article  CAS  Google Scholar 

  55. Peters MB, Yang Y, Wang B, FüSti-MolnáR LS, Weaver MN, Merz KM Jr (2010) J Chem Theory Comput 6:2935–2947

    Article  CAS  Google Scholar 

  56. Reichert DE, Norrby P-O, Welch MJ (2001) Inorg Chem 40:5223–5230

    Article  CAS  Google Scholar 

  57. Hæffner F, Brinck T, Haeberlein M, Moberg C (1997) J Mol Struct (Theochem) 397:39–50

    Article  Google Scholar 

  58. Branco RJF, Fernandes PA, Ramos MJ (2006) J Phys Chem B 110:16754–16762

    Article  CAS  Google Scholar 

  59. Pang Y-P, Xu KUN, Yazal JE, Prendergast FG (2000) Protein Sci 9:1857–1865

    CAS  Google Scholar 

  60. Dupradeau F-Y, Pigache A, Zaffran T, Savineau C, Lelong R, Grivel N, Lelong D, Rosanski W, Cieplak P (2010) Phys Chem Chem Phys 12:7821–7839

    Article  CAS  Google Scholar 

  61. Comba P, Remenyi R (2002) J Comput Chem 23:697–705

    Article  CAS  Google Scholar 

  62. Autenrieth F, Tajkhorshid E, Baudry J, Luthey-Schulten Z (2004) J Comput Chem 25:1613–1622

    Article  CAS  Google Scholar 

  63. Comba P, Daubinet A, Martin B, Pietzsch H-J, Stephan H (2006) J Organomet Chem 691:2495–2502

    Article  CAS  Google Scholar 

  64. Shuku T, Sugimori K, Sugiyama A, Nagao H, Sakurai T, Nishikawa K (2005) Polyhedron 24:2665–2670

    Article  CAS  Google Scholar 

  65. Sugiyama A, Takamatsu Y, Nishikawa K, Nagao H, Nishikawa K (2006) Int J Quantum Chem 106:3071–3078

    Article  CAS  Google Scholar 

  66. Zhu Y, Wang Y, Chen G, Zhan C-G (2009) Theor Chem Acc 122:167–178

    Article  CAS  Google Scholar 

  67. Hegg EL, Burstyn JN (1998) Coord Chem Rev 173:133–165

    Article  CAS  Google Scholar 

  68. Mancin F, Scrimin P, Tecilla P, Tonellato U (2005) Chem Commun (20):2540-2548

  69. An Y, Liu SD, Deng SY, Ji LN, Mao ZW (2006) J Inorg Biochem 100:1586–1593

    Article  CAS  Google Scholar 

  70. Patra AK, Nethaji M, Chakravarty AR (2007) J Inorg Biochem 101:233–244

    Article  CAS  Google Scholar 

  71. Venkatraman R, Zubkowski JD, Valente EJ (1999) Acta Crystallogr C 55:1241–1243

    Article  Google Scholar 

  72. Nakai H, Deguchi Y (1975) Bull Chem Soc Jpn 48:2557–2560

    Article  CAS  Google Scholar 

  73. Harrison WD, Hathaway BJ, Kennedy D (1979) Acta Crystallogr 35:2301–2306

    Article  Google Scholar 

  74. Rao R, Patra AK, Chetana PR (2007) Polyhedron 26:5331–5338

    Article  CAS  Google Scholar 

  75. Reddy PR, Raju N, Manjula P, Reddy KVG (2007) Chem Biodivers 4:1565–1577

    Article  CAS  Google Scholar 

  76. Moreno-Esparza R, Molins E, Brianso-Penalva JL, Ruiz-Ramírez L, Redón R (1995) Acta Crystallogr C 51:1505–1508

    Article  Google Scholar 

  77. Case DA, Darden TA, Cheatham TE III, Simmerling CL, Wang J, Duke RE, Luo R, Merz KM, Pearlman DA, Crowley M, Walker RC, Zhang W, Wang B, Hayik S, Roitberg A, Seabra G, Wong KF, Paesani F, Wu X, Brozell S, Tsui V, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Beroza P, Mathews DH, Schafmeister C, Ross WS, Kollman PA (2006) AMBER 9. University of California, San Francisco

    Google Scholar 

  78. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  79. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T Jr, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Ehara M, Hada M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) GAUSSIAN03. Gaussian Inc, Wallingford

    Google Scholar 

  80. Schäfer A, Horn H, Ahlrichs R (1992) J Chem Phys 97:2571–2577

    Article  Google Scholar 

  81. Olsson MHM, Ryde U (2001) J Am Chem Soc 123:7866–7876

    Article  CAS  Google Scholar 

  82. Ditchfield R (1971) J Chem Phys 54:724

    Article  CAS  Google Scholar 

  83. Pople JA, Nesbet RK (1954) J Chem Phys 22:571

    Article  CAS  Google Scholar 

  84. Bayly CI, Cieplak P, Cornell W, Kollman PA (1993) J Phys Chem 97:10269–10280

    Article  CAS  Google Scholar 

  85. Singh UC, Kollman PA (1984) J Comput Chem 5:129–145

    Article  CAS  Google Scholar 

  86. Yang X-L, Hubbard RB IV, Lee M, Tao Z-F, Sugiyama H, Wang AH-J (1999) Nucleic Acids Res 27:4183–4190

    Article  CAS  Google Scholar 

  87. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) J Comput Chem 30:2785–2791

    Article  CAS  Google Scholar 

  88. Cieplak P, Cornell WD, Bayly C, Kollman PA (1995) J Comput Chem 16:1357–1377

    Article  CAS  Google Scholar 

  89. Dendrinou-Samara C, Psomas G, Raptopoulou CP, Kessissoglou DP (2001) J Inorg Biochem 83:7–16

    Article  CAS  Google Scholar 

  90. Psomas G, Raptopoulou CP, Iordanidis L, Dendrinou-Samara C, Tangoulis V, Kessissoglou DP (2000) Inorg Chem 39:3042–3048

    Article  CAS  Google Scholar 

  91. Psomas G, Dendrinou-Samara C, Philippakopoulos P, Tangoulis V, Raptopoulou CP, Samaras E, Kessissoglou DP (1998) Inorg Chim Acta 272:24–32

    Article  CAS  Google Scholar 

  92. Zhu Y, Su Y, Li X, Wang Y, Chen G (2008) Chem Phys Lett 455:354–360

    Article  CAS  Google Scholar 

  93. Breneman CM, Wiberg KB (1990) J Comput Chem 11:361–373

    Article  CAS  Google Scholar 

  94. Bol JE, Buning C, Comba P, Reedijk J, Ströhle M (1998) J Comput Chem 19:512–523

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge research support from the National Science Foundation of China (No. 21271029, 21131003, 21073015, and 20973024) and the Major State Basic Research Development Programs (Grant No. 2011CB808500).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Wang, Bo Yang or Guangju Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 43 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, T., Cui, S., Wang, Y. et al. An integrating strategy of AMBER force field parameters for the photoinduced copper nucleases. Theor Chem Acc 134, 1603 (2015). https://doi.org/10.1007/s00214-014-1603-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-014-1603-5

Keywords

Navigation