Skip to main content

Advertisement

Log in

Acid-catalyzed transesterification and esterification in methanol: a theoretical cluster-continuum investigation of the mechanisms and free energy barriers

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The mechanism of the acid-catalyzed transesterification reaction was widely studied by experimental methods. However, theoretical studies with reliable calculation of the free energy barrier for solution phase reaction are scarce. In this report, we have done a theoretical investigation (using MP4, X3LYP, CPCM and SMD methods) of the acid-catalyzed transesterification of ethyl acetate and esterification of acetic acid in methanol solution, two prototypical reactions important for biodiesel production via acid catalysis. We have found three mechanisms of the AAC2 type and one mechanism of the AAL2 type. Only one AAC2 mechanism is kinetically viable and involves initial formation of a complex with protonated methanol hydrogen bonded to the ester (acid) carbonyl oxygen. This reaction pathway takes place through several intermediates and transition states, and the highest free energy barriers were estimated as being 23.1 and 22.4 kcal mol−1 for transesterification and esterification reactions, respectively. This last value is in good agreement with the experimentally determined free energy barrier of 19.0 kcal mol−1. The present results point out the acid-catalyzed transesterification and esterification reactions take place through the classical AAC2 mechanism in methanol solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Scheme 3
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Otera J (1993) Chem Rev 93:1449

    Article  CAS  Google Scholar 

  2. Leung DYC, Wu X, Leung MKH (2010) Appl Energy 87:1083

    Article  CAS  Google Scholar 

  3. Suarez PAZ, Santos ALF, Rodrigues JP, Alves MB (2009) Quim Nova 32:768

    Article  CAS  Google Scholar 

  4. Meher LC, Vidya Sagar D, Naik SN (2006) Renew Sustain Energy Rev 10:248

    Article  CAS  Google Scholar 

  5. Gerpen JV (2005) Fuel Process Technol 86:1097

    Article  Google Scholar 

  6. Moser B (2011) Biodiesel production, properties, and feedstocks. In: Tomes D, Lakshmanan P, Songstad D (eds) Biofuels. Springer, New York, p 285

    Chapter  Google Scholar 

  7. Sani YM, Daud WMAW, Abdul Aziz AR (2014) Appl Catal A Gen 470:140

    Article  CAS  Google Scholar 

  8. Lee AF, Bennett JA, Manayil JC, Wilson K (2014) Chem Soc Rev 43:7887

  9. Deuss PJ, Barta K, de Vries JG (2014) Catal Sci Technol 4:1174

    Article  CAS  Google Scholar 

  10. Abbaszaadeh A, Ghobadian B, Omidkhah MR, Najafi G (2012) Energy Convers Manag 63:138

    Article  CAS  Google Scholar 

  11. Atabani AE, Silitonga AS, Badruddin IA, Mahlia TMI, Masjuki HH, Mekhilef S (2012) Renew Sustain Energy Rev 16:2070

    Article  Google Scholar 

  12. Kouzu M, Hidaka J-S (2012) Fuel 93:1

    Article  CAS  Google Scholar 

  13. Wan Omar WNN, Amin NAS (2011) Fuel Process Technol 92:2397

    Article  CAS  Google Scholar 

  14. Refaat AA (2011) Int J Environ Sci Technol 8:203

    Article  CAS  Google Scholar 

  15. Fang D, Yang J, Jiao C (2010) ACS Catal 1:42

    Article  Google Scholar 

  16. Zabeti M, Wan Daud WMA, Aroua MK (2009) Fuel Process Technol 90:770

    Article  CAS  Google Scholar 

  17. Kouzu M, Kasuno T, Tajika M, Sugimoto Y, Yamanaka S, Hidaka J (2008) Fuel 87:2798

    Article  CAS  Google Scholar 

  18. Suarez PAZ, Macedo CCS, Abreu FR, Tavares AP, Alves MB, Zara LF, Rubim JC (2006) J Braz Chem Soc 17:1291

    Google Scholar 

  19. Watkins RS, Lee AF, Wilson K (2004) Green Chem 6:335

    Article  CAS  Google Scholar 

  20. Schuchardt U, Sercheli R, Vargas RM (1998) J Braz Chem Soc 9:199

    Article  CAS  Google Scholar 

  21. Zhan CG, Landry DW, Ornstein RL (2000) J Am Chem Soc 122:1522

    Article  CAS  Google Scholar 

  22. Zhan CG, Landry DW, Ornstein RL (2000) J Am Chem Soc 122:2621

    Article  CAS  Google Scholar 

  23. Zhan CG, Landry DW, Ornstein RL (2000) J Phys Chem A 104:7672

    Article  CAS  Google Scholar 

  24. Haeffner F, Hu CH, Brinck T, Norin T (1999) THEOCHEM 459:85

    Article  CAS  Google Scholar 

  25. Pranata J (1994) J Phys Chem 98:1180

    Article  CAS  Google Scholar 

  26. Pliego JR Jr, Riveros JM (2004) J Phys Chem A 108:2520

    Article  CAS  Google Scholar 

  27. Pliego JR Jr, Riveros JM (2002) Chem Eur J 8:1945

    Article  CAS  Google Scholar 

  28. Pliego JR Jr, Riveros JM (2001) Chem Eur J 7:169

    Article  CAS  Google Scholar 

  29. Gómez-Bombarelli R, Calle E, Casado J (2013) J Org Chem 78:6880

    Article  Google Scholar 

  30. Yamabe S, Fukuda T, Ishii M (2011) Theor Chem Acc 130:429

    Article  CAS  Google Scholar 

  31. Fileti EE, De Oliveira AE, Morgon NH, Riveros JM (2011) Int J Quantum Chem 111:1596

    Article  CAS  Google Scholar 

  32. Hori K, Ikenaga Y, Arata K, Takahashi T, Kasai K, Noguchi Y, Sumimoto M, Yamamoto H (2007) Tetrahedron 63:1264

    Article  CAS  Google Scholar 

  33. Bender ML (1960) Chem Rev 60:53

    Article  CAS  Google Scholar 

  34. Edenborough M (1999) Organic reaction mechanisms: a step by step approach, 2nd edn. USA Taylor & Francis Inc., Philadelphia

    Google Scholar 

  35. Smith MB, March J (2007) March’s advanced organic chemistry, 6th edn. Wiley, New Jersey

    Google Scholar 

  36. Wang B, Cao Z (2010) J Phys Chem A 114:12918

    Article  CAS  Google Scholar 

  37. da Silva PL, Guimarães L, Pliego JR (2013) J Phys Chem B 117:6487

    Article  Google Scholar 

  38. Xu X, Goddard WA (2004) PNAS 101:2673

    Article  CAS  Google Scholar 

  39. Xu X, Zhang Q, Muller RP, Goddard Iii WA (2005) J. Chem Phys 122:014105

    Article  Google Scholar 

  40. Cossi M, Rega N, Scalmani G, Barone V (2003) J Comput Chem 24:669

    Article  CAS  Google Scholar 

  41. Mennucci B, Cancès E, Tomasi J (1997) J Phys Chem B 101:10506

    Article  CAS  Google Scholar 

  42. Rega N, Cossi M, Barone V (1999) J Comput Chem 20:1186

    Article  CAS  Google Scholar 

  43. Takano Y, Houk KN (2004) J Chem Theory Comput 1:70

    Article  Google Scholar 

  44. Tomasi J, Mennucci B, Cancès E (1999) J Mol Struct THEOCHEM 464:211

    Article  CAS  Google Scholar 

  45. Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297

    Article  CAS  Google Scholar 

  46. Marenich AV, Cramer CJ, Truhlar DG (2009) J Phys Chem B 113:6378

    Article  CAS  Google Scholar 

  47. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347

    Article  CAS  Google Scholar 

  48. Granovsky AA (2009) Firefly, version 7.1.F. http://classic.chem.msu.su/gran/firefly/index.html

  49. Miguel ELM, Silva PL, Pliego JR (2014) J Phys Chem B 118:5730

    Article  CAS  Google Scholar 

  50. Pliego JR, Riveros JM (2001) J Phys Chem A 105:7241

    Article  CAS  Google Scholar 

  51. Pliego JR Jr, Riveros JM (2002) J Phys Chem A 106:7434

    Article  CAS  Google Scholar 

  52. Eckert F, Diedenhofen M, Klamt A (2009) Mol Phys 108:229

    Article  Google Scholar 

  53. Ho J, Coote ML (2010) Theor Chem Acc 125:3

    Article  CAS  Google Scholar 

  54. Ho J (2014) Aust J Chem 67:1441

  55. Sunoj RB, Anand M (2012) Phys Chem Chem Phys 14:12715

    Article  CAS  Google Scholar 

  56. Silva CM, Silva PL, Pliego JR (2014) Int J Quantum Chem 114:501

    Article  CAS  Google Scholar 

  57. Birchall T, Gillespie RJ (1965) Can J Chem 43:1045

    Article  CAS  Google Scholar 

  58. Pliego JR Jr (2009) J Phys Chem B 113:505

    Article  CAS  Google Scholar 

  59. Kirby AJ (1972) Chapter 2 hydrolysis and formation of esters of organic acids. In: Bamford CH, Tipper CFH (eds) Comprehensive chemical kinetics, vol 10. Elsevier, pp 57

Download references

Acknowledgments

The authors thank the agencies CNPq, FAPEMIG and CAPES for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josefredo R. Pliego Jr..

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, P.L., Silva, C.M., Guimarães, L. et al. Acid-catalyzed transesterification and esterification in methanol: a theoretical cluster-continuum investigation of the mechanisms and free energy barriers. Theor Chem Acc 134, 1591 (2015). https://doi.org/10.1007/s00214-014-1591-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-014-1591-5

Keywords

Navigation