Skip to main content
Log in

A comparison study of the H + CH4 and H + SiH4 reactions with eight-dimensional quantum dynamics: normal mode versus local mode in the reactant molecule vibration

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

While molecular vibration of CH4 is well described by the normal-mode paradigm, the local mode picture is more suitable for understanding the SiH4 stretching vibrational motion. To compare the roles of the two types of molecular vibration in reaction dynamics, the H + CH4 → H2 + CH3 and H + SiH4 → H2 + SiH3 reactions have been investigated using an eight-dimensional (8D) quantum dynamics method in which the nonreacting XH3 (X = C, Si) group keeps its C3v symmetry in the reaction. The reaction probabilities, integral cross sections and thermal rate constants in the temperature range of 200–2,000 K were calculated for both reactions. Strong mode specificity was found in both reactions, and the differences were rationalized by the vibrational characteristics of the CH4 and SiH4 reactants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Polanyi JC (1972) Acc Chem Res 5:161

    Article  CAS  Google Scholar 

  2. Zhang WQ, Zhou Y, Wu GR, Lu YP, Pan HL, Fu BN, Shuai QA, Liu L, Liu S, Zhang LL, Jiang B, Dai DX, Lee SY, Xie Z, Braams BJ, Bowman JM, Collins MA, Zhang DH, Yang XM (2010) Proc Natl Acad Sci USA 107:12782

    Article  CAS  Google Scholar 

  3. Zhang WQ, Kawamata H, Liu KP (2009) Science 325:303

    Article  CAS  Google Scholar 

  4. Wang FY, Liu KP (2010) Chem Sci 1:126

    Article  CAS  Google Scholar 

  5. Wang FY, Lin JS, Liu KP (2011) Science 331:900

    Article  CAS  Google Scholar 

  6. Lin JJ, Zhou JG, Shiu WC, Liu KP (2003) Science 300:966

    Article  CAS  Google Scholar 

  7. Zhang ZJ, Zhou Y, Zhang DH, Czako G, Bowman JM (2012) J Phys Chem Lett 3:3416

    Article  CAS  Google Scholar 

  8. Jiang B, Liu R, Li J, Xie DQ, Yang MH, Guo H (2013) Chem Sci 4:3249

    Article  CAS  Google Scholar 

  9. Liu R, Yang MH, Czako G, Bowman JM, Li J, Guo H (2012) J Phys Chem Lett 3:3776

    Article  CAS  Google Scholar 

  10. Czako G, Bowman JM (2011) Science 334:343

    Article  CAS  Google Scholar 

  11. Duncan WT, Truong TN (1995) J Chem Phys 103:9642

    Article  CAS  Google Scholar 

  12. Yoon S, Holiday RJ, Sibert EL III, Crim FF (2003) J Chem Phys 119:9568

    Article  CAS  Google Scholar 

  13. Yan S, Wu Y-T, Liu K (2008) Proc Natl Acad Sci USA 105:12667

    Article  CAS  Google Scholar 

  14. Jiang B, Guo H (2013) J Chem Phys 138:234104

    Article  Google Scholar 

  15. Jiang B, Guo H (2013) J Am Chem Soc 135:15251

    Article  CAS  Google Scholar 

  16. Wilson EB, Decius JC, Cross PC (1955) Molecular vibrations. Dover, New York

    Google Scholar 

  17. Ma GB, Guo H (1999) J Chem Phys 111:4032

    Article  CAS  Google Scholar 

  18. Palma J, Echave J, Clary DC (2002) J Phys Chem A 106:8256

    Article  CAS  Google Scholar 

  19. Liu R, Xiong HW, Yang MH (2012) J Chem Phys 137:174113

    Article  Google Scholar 

  20. Yang MH, Zhang DH, Lee SY (2002) J Chem Phys 117:9539

    Article  CAS  Google Scholar 

  21. Halonen L, Carrington T (1988) J Chem Phys 88:4171

    Article  CAS  Google Scholar 

  22. Halonen L (1998) Adv Chem Phys 104:41

    CAS  Google Scholar 

  23. Halonen L, Child MS (1983) J Chem Phys 79:4355

    Article  CAS  Google Scholar 

  24. Halonen L, Noid DW, Child MS (1983) J Chem Phys 78:2803

    Article  CAS  Google Scholar 

  25. Zhu QS, Zhang BS, Ma YR, Qian HB (1989) Chem Phys Lett 164:596

    Article  CAS  Google Scholar 

  26. Zhu QS, Zhang BS, Ma YR, Qian HB (1990) Spectrochim Acta A 46:1217

    Article  Google Scholar 

  27. Camden JP, Bechtel HA, Brown DJA, Zare RN (2005) J Chem Phys 123:134301

    Article  Google Scholar 

  28. Camden JP, Hu WF, Bechtel HA, Brown DJA, Martin MR, Zare RN, Lendvay G, Troya D, Schatz GC (2006) J Phys Chem A 110:677

    Article  CAS  Google Scholar 

  29. Liu S, Chen J, Zhang ZJ, Zhang DH (2013) J Chem Phys 138:011101

    Article  Google Scholar 

  30. Welsch R, Manthe U (2012) J Chem Phys 137:244106

    Article  Google Scholar 

  31. Schiffel G, Manthe U (2010) J Chem Phys 133:174124

    Article  Google Scholar 

  32. Zhang LL, Lu YP, Lee SY, Zhang DH (2007) J Chem Phys 127(23):4313

    Article  Google Scholar 

  33. Yang MH, Lee SY, Zhang DH (2007) J Chem Phys 126:064303

    Article  Google Scholar 

  34. Kerkeni B, Clary DC (2004) J Chem Phys 120:2308

    Article  CAS  Google Scholar 

  35. Zhang X, Yang GH, Han KL, Wang ML, Zhang JZH (2003) J Chem Phys 118:9266

    Article  CAS  Google Scholar 

  36. Wang DY, Bowman JM (2001) J Chem Phys 115:2055

    Article  CAS  Google Scholar 

  37. Yu HG, Nyman G (1999) J Chem Phys 111:3508

    Article  CAS  Google Scholar 

  38. Takayanagi T (1996) J Chem Phys 104:2237

    Article  CAS  Google Scholar 

  39. Palma J, Clary DC (2000) J Chem Phys 112:1859

    Article  CAS  Google Scholar 

  40. Shen GL, Yang XM, Shu JN, Yang CH, Lee YT (2006) J Chem Phys 125:133103

    Article  Google Scholar 

  41. Zhang WQ, Wu GR (2009) Pan, H. L. Q. Shuai, B. Jiang, D. X. Dai and X. M. Yang. J Phys Chem A 113:4652

    Article  CAS  Google Scholar 

  42. Wu GR, Zhang WQ, Pan HL, Shuai QA, Yang JY, Jiang B, Dai DX, Yang XM (2010) Phys Chem Chem Phys 12:9469

    Article  CAS  Google Scholar 

  43. Xiao CF, Shen GL, Wang XY, Yang XM (2011) Chin J Chem Phys 24:4

    Article  CAS  Google Scholar 

  44. Espinosa-Garcia J, Sanson J, Corchado JC (1998) J Chem Phys 109:466

    Article  CAS  Google Scholar 

  45. Wang WJ, Feng SL, Zhao Y (2007) J Chem Phys 126:114307

    Article  Google Scholar 

  46. Wang MH, Sun XM, Bian WS, Cai ZT (2006) J Chem Phys 124:234311

    Article  Google Scholar 

  47. Wang MH, Sun XM, Bian WS (2008) J Chem Phys 129:084309

    Article  Google Scholar 

  48. Cao JW, Zhang ZJ, Zhang CF, Liu K, Wang MH, Bian WS (2009) Proc Natl Acad Sci USA 106:13180

    Article  CAS  Google Scholar 

  49. Cao JW, Zhang ZJ, Zhang CF, Bian WS, Guo Y (2011) J Chem Phys 134:024315

    Article  Google Scholar 

  50. Espinosa-Garcia J (2002) J Chem Phys 116:10664

    Article  CAS  Google Scholar 

  51. Jordan MJT, Gilbert RG (1995) J Chem Phys 102:5669

    Article  CAS  Google Scholar 

  52. Zhao Y, Yamamoto T, Miller WH (2004) J Chem Phys 120:3100

    Article  CAS  Google Scholar 

  53. Espinosa-Garcia J (2008) Phys Chem Chem Phys 10:1277

    Article  CAS  Google Scholar 

  54. Xie Z, Braams BJ, Bowman JM (2005) J Chem Phys 122:224307

    Article  Google Scholar 

  55. Zhou Y, Fu BN, Wang CR, Collins MA, Zhang DH (2011) J Chem Phys 134:064323

    Article  Google Scholar 

  56. Palma J, Clary DC (2000) Phys Chem Chem Phys 2:4105

    Article  CAS  Google Scholar 

  57. Zare RN (1988) Angular momentum. Wiley, New York

    Google Scholar 

  58. Miller WH, Handy NC, Adams JE (1980) J Chem Phys 72:99

    Article  CAS  Google Scholar 

  59. Corchado JC, Chuang Y–Y, Fast PL, Hu W-P, Liu Y-P, Lynch GC, Nguyen KA, Jackels CF, Fernandez Ramos A, Ellingson BA, Lynch BJ, Zheng J, Melissas VS, Villà J, Rossi I, Coitiño EL, Pu J, Albu TV, Steckler R, Garrett BC, Isaacson AD, Truhlar DG (2007) Polyrate, version 9.7, University of Minnesota, Minneapolis

  60. Page M, McIver JW (1988) J Chem Phys 88:922

    Article  CAS  Google Scholar 

  61. Zhang DH, Collins MA, Lee SY (2000) Science 290:961

    Article  CAS  Google Scholar 

  62. Gray DL, Robiette AG (1979) Mol Phys 37:1901

    Article  CAS  Google Scholar 

  63. Lide DR (1998) CRC handbook of chemistry and physics, 79th edn. CRC, New York

    Google Scholar 

  64. Palma J, Clary DC (2001) J Chem Phys 115:2188

    Article  CAS  Google Scholar 

  65. Pack RT (1974) J Chem Phys 60:633

    Article  CAS  Google Scholar 

  66. McGuire P, Kouri DJ (1974) J Chem Phys 60:2488

    Article  CAS  Google Scholar 

  67. Kurylo MJ, Timmons RB (1969) J Chem Phys 50:5076

    Article  CAS  Google Scholar 

  68. Baulch DL, Cobos CJ, Cox RA, Esser C, Frank P, Just T, Kerr JA, Pilling MJ, Troe J, Walker RW, Warnatz J (1992) J Phys Chem Ref Data 21:411

    Article  CAS  Google Scholar 

  69. Sutherland JW, Su MC, Michael JV (2001) Int J Chem Kinet 33:669

    Article  CAS  Google Scholar 

  70. Goumri A, Yuan WJ, Ding LY, Shi YC, Marshall P (1993) Chem Phys 177:233

    Article  CAS  Google Scholar 

  71. Arthur NL, Miles LA (1997) J Chem Soc, Faraday Trans 93:4259

    Article  CAS  Google Scholar 

  72. Zhou Y, Wang CR, Zhang DH (2011) J Chem Phys 135:024313

    Article  Google Scholar 

  73. Wang FY, Lin JS, Cheng Y, Liu KP (2013) J Phys Chem Lett 4:323

    Article  CAS  Google Scholar 

  74. Jiang B, Guo H (in press) J Chin Chem Soc. doi:10.1002/jccs.201400158

Download references

Acknowledgments

This work was supported by National Science Foundation of China (Projects No. 21221064 and 21373266 to MY) and US Department of Energy (DE-FG02-05ER15694 to HG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minghui Yang.

Additional information

Dedicated to Professor Guosen Yan and published as part of the special collection of articles celebrating his 85th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Li, J., Guo, H. et al. A comparison study of the H + CH4 and H + SiH4 reactions with eight-dimensional quantum dynamics: normal mode versus local mode in the reactant molecule vibration. Theor Chem Acc 133, 1555 (2014). https://doi.org/10.1007/s00214-014-1555-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-014-1555-9

Keywords

Navigation