Skip to main content
Log in

Dissociation of nicotinic α7 and α4/β2 sub-receptor agonists for enhancing learning and attentional filtering in nonhuman primates

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Nicotinic acetylcholine receptors (nAChRs) modulate attention, memory, and higher executive functioning, but it is unclear how nACh sub-receptors mediate different mechanisms supporting these functions.

Objectives

We investigated whether selective agonists for the alpha-7 nAChR versus the alpha-4/beta-2 nAChR have unique functional contributions for value learning and attentional filtering of distractors in the nonhuman primate.

Methods

Two adult rhesus macaque monkeys performed reversal learning following systemic administration of either the alpha-7 nAChR agonist PHA-543613 or the alpha-4/beta-2 nAChR agonist ABT-089 or a vehicle control. Behavioral analysis quantified performance accuracy, speed of processing, reversal learning speed, the control of distractor interference, perseveration tendencies, and motivation.

Results

We found that the alpha-7 nAChR agonist PHA-543613 enhanced the learning speed of feature values but did not modulate how salient distracting information was filtered from ongoing choice processes. In contrast, the selective alpha-4/beta-2 nAChR agonist ABT-089 did not affect learning speed but reduced distractibility. This dissociation was dose-dependent and evident in the absence of systematic changes in overall performance, reward intake, motivation to perform the task, perseveration tendencies, or reaction times.

Conclusions

These results suggest nicotinic sub-receptor specific mechanisms consistent with (1) alpha-4/beta-2 nAChR specific amplification of cholinergic transients in prefrontal cortex linked to enhanced cue detection in light of interferences, and (2) alpha-7 nAChR specific activation prolonging cholinergic transients, which could facilitate subjects to follow-through with newly established attentional strategies when outcome contingencies change. These insights will be critical for developing function-specific drugs alleviating attention and learning deficits in neuro-psychiatric diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Albuquerque EX, Pereira EF, Alkondon M, Rogers SW (2009) Mammalian nicotinic acetylcholine receptors: from structure to function. Physiol Rev 89(1):73–120

    Article  CAS  PubMed  Google Scholar 

  • Alexander WH, Brown JW (2011) Medial prefrontal cortex as an action-outcome predictor. Nat Neurosci 14(10):1338–1344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Apostol G, Abi-Saab W, Kratochvil CJ, Adler LA, Robieson WZ, Gault LM et al (2012) Efficacy and safety of the novel alpha(4)beta(2) neuronal nicotinic receptor partial agonist ABT-089 in adults with attention-deficit/hyperactivity disorder: a randomized, double-blind, placebo-controlled crossover study. Psychopharmacology 219(3):715–725

    Article  CAS  PubMed  Google Scholar 

  • Arnaiz-Cot JJ, Gonzalez JC, Sobrado M, Baldelli P, Carbone E, Gandia L et al (2008) Allosteric modulation of alpha 7 nicotinic receptors selectively depolarizes hippocampal interneurons, enhancing spontaneous GABAergic transmission. Eur J Neurosci 27(5):1097–1110

    Article  CAS  PubMed  Google Scholar 

  • Balcarras M, Ardid S, Kaping D, Everling S, Womelsdorf T (2016) Attentional selection can be predicted by reinforcement learning of task-relevant stimulus features weighted by value-independent stickiness. J Cogn Neurosci 28(2):333–349

    Article  PubMed  Google Scholar 

  • Bali ZK, Inkeller J, Csurgyok R, Bruszt N, Horvath H, Hernadi I (2015) Differential effects of alpha7 nicotinic receptor agonist PHA-543613 on spatial memory performance of rats in two distinct pharmacological dementia models. Behav Brain Res 278:404–410

    Article  CAS  PubMed  Google Scholar 

  • Ballinger EC, Ananth M, Talmage DA, Role LW (2016) Basal forebrain cholinergic circuits and signaling in cognition and cognitive decline. Neuron 91(6):1199–1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertrand D, Terry AV Jr (2018) The wonderland of neuronal nicotinic acetylcholine receptors. Biochem Pharmacol 151:214–225

    Article  CAS  PubMed  Google Scholar 

  • Bertrand D, Lee CH, Flood D, Marger F, Donnelly-Roberts D (2015) Therapeutic potential of alpha7 nicotinic acetylcholine receptors. Pharmacol Rev 67(4):1025–1073

    Article  CAS  PubMed  Google Scholar 

  • Bortz DM, Mikkelsen JD, Bruno JP (2013) Localized infusions of the partial alpha 7 nicotinic receptor agonist SSR180711 evoke rapid and transient increases in prefrontal glutamate release. Neuroscience 255:55–67

    Article  CAS  PubMed  Google Scholar 

  • Briggs CA, Anderson DJ, Brioni JD, Buccafusco JJ, Buckley MJ, Campbell JE et al (1997) Functional characterization of the novel neuronal nicotinic acetylcholine receptor ligand GTS-21 in vitro and in vivo. Pharmacol Biochem Behav 57(1–2):231–241

    Article  CAS  PubMed  Google Scholar 

  • Buccafusco JJ, Terry AV Jr (2009) A reversible model of the cognitive impairment associated with schizophrenia in monkeys: potential therapeutic effects of two nicotinic acetylcholine receptor agonists. Biochem Pharmacol 78(7):852–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buccafusco JJ, Jackson WJ, Gattu M, Terry AV Jr (1995) Isoarecolone-induced enhancement of delayed matching to sample performance in monkeys: role of nicotinic receptors. Neuroreport 6(8):1223–1227

    Article  CAS  PubMed  Google Scholar 

  • Buccafusco JJ, Terry AV Jr, Decker MW, Gopalakrishnan M (2007) Profile of nicotinic acetylcholine receptor agonists ABT-594 and A-582941, with differential subtype selectivity, on delayed matching accuracy by young monkeys. Biochem Pharmacol 74(8):1202–1211

    Article  CAS  PubMed  Google Scholar 

  • Chin CL, Carr RA, Llano DA, Barret O, Xu H, Batis J et al (2011) Pharmacokinetic modeling and [(1)(2)(3)]5-IA-85380 single photon emission computed tomography imaging in baboons: optimization of dosing regimen for ABT-089. J Pharmacol Exp Ther 336(3):716–723

    Article  CAS  PubMed  Google Scholar 

  • Chudasama Y, Robbins TW (2006) Functions of frontostriatal systems in cognition: comparative neuropsychopharmacological studies in rats, monkeys and humans. Biol Psychol 73(1):19–38

    Article  CAS  PubMed  Google Scholar 

  • Decamp E, Schneider JS (2006) Effects of nicotinic therapies on attention and executive functions in chronic low-dose MPTP-treated monkeys. Eur J Neurosci 24(7):2098–2104

    Article  CAS  PubMed  Google Scholar 

  • Decker MW, Bannon AW, Curzon P, Gunther KL, Brioni JD, Holladay MW, Lin NH, Li Y, Daanen JF, Buccafusco JJ, Prendergast MA, Jackson WJ, Arneric SP (1997) ABT-089 [2-methyl-3-(2-(S)-pyrrolidinylmethoxy) pyridine dihydrochloride]: II. A novel cholinergic channel modulator with effects on cognitive performance in rats and monkeys. J Pharmacol Exp Ther 283(1):247–258

    CAS  PubMed  Google Scholar 

  • Deutsch JA (1971) The cholinergic synapse and the site of memory. Science 174(4011):788–794

    Article  CAS  PubMed  Google Scholar 

  • Dickinson JA, Kew JN, Wonnacott S (2008) Presynaptic alpha 7- and beta 2-containing nicotinic acetylcholine receptors modulate excitatory amino acid release from rat prefrontal cortex nerve terminals via distinct cellular mechanisms. Mol Pharmacol 74(2):348–359

    Article  CAS  PubMed  Google Scholar 

  • Fusi S, Asaad WF, Miller EK, Wang XJ (2007) A neural circuit model of flexible sensorimotor mapping: learning and forgetting on multiple timescales. Neuron 54(2):319–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gotti C, Zoli M, Clementi F (2006) Brain nicotinic acetylcholine receptors: native subtypes and their relevance. Trends Pharmacol Sci 27(9):482–491

    Article  CAS  PubMed  Google Scholar 

  • Gould RW, Garg PK, Garg S, Nader MA (2013) Effects of nicotinic acetylcholine receptor agonists on cognition in rhesus monkeys with a chronic cocaine self-administration history. Neuropharmacology 64:479–488

    Article  CAS  PubMed  Google Scholar 

  • Gu Z, Yakel JL (2011) Timing-dependent septal cholinergic induction of dynamic hippocampal synaptic plasticity. Neuron 71(1):155–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu Z, Lamb PW, Yakel JL (2012) Cholinergic coordination of presynaptic and postsynaptic activity induces timing-dependent hippocampal synaptic plasticity. J Neurosci 32(36):12337–12348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hahn B, Sharples CG, Wonnacott S, Shoaib M, Stolerman IP (2003) Attentional effects of nicotinic agonists in rats. Neuropharmacology 44(8):1054–1067

    Article  CAS  PubMed  Google Scholar 

  • Hassani SA, Oemisch M, Balcarras M, Westendorff S, Ardid S, van der Meer MA, et al. (2017). A computational psychiatry approach identifies how alpha-2A noradrenergic agonist Guanfacine affects feature-based reinforcement learning in the macaque. Scientific reports7

  • Hillmer AT, Li S, Zheng MQ, Scheunemann M, Lin SF, Nabulsi N, Holden D, Pracitto R, Labaree D, Ropchan J, Teodoro R, Deuther-Conrad W, Esterlis I, Cosgrove KP, Brust P, Carson RE, Huang Y (2017) PET imaging of alpha7 nicotinic acetylcholine receptors: a comparative study of [(18)F] ASEM and [(18)F]DBT-10 in nonhuman primates, and further evaluation of [(18)F] ASEM in humans. Eur J Nucl Med Mol Imaging 44(6):1042–1050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howe WM, Ji J, Parikh V, Williams S, Mocaer E, Trocme-Thibierge C et al (2010) Enhancement of attentional performance by selective stimulation of alpha4beta2(*) nAChRs: underlying cholinergic mechanisms. Neuropsychopharmacology 35(6):1391–1401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howe WM, Berry AS, Francois J, Gilmour G, Carp JM, Tricklebank M, Lustig C, Sarter M (2013) Prefrontal cholinergic mechanisms instigating shifts from monitoring for cues to cue-guided performance: converging electrochemical and fMRI evidence from rats and humans. J Neurosci 33(20):8742–8752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Izquierdo A, Brigman JL, Radke AK, Rudebeck PH, Holmes A (2017) The neural basis of reversal learning: an updated perspective. Neuroscience 345:12–26

    Article  CAS  PubMed  Google Scholar 

  • Jiang L, Kundu S, Lederman JD, Lopez-Hernandez GY, Ballinger EC, Wang S et al (2016) Cholinergic signaling controls conditioned fear behaviors and enhances plasticity of cortical-amygdala circuits. Neuron 90(5):1057–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones IW, Wonnacott S (2004) Precise localization of alpha7 nicotinic acetylcholine receptors on glutamatergic axon terminals in the rat ventral tegmental area. J Neurosci 24(50):11244–11252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones KM, McDonald IM, Bourin C, Olson RE, Bristow LJ, Easton A (2014) Effect of alpha7 nicotinic acetylcholine receptor agonists on attentional set-shifting impairment in rats. Psychopharmacology 231(4):673–683

    Article  CAS  PubMed  Google Scholar 

  • Kehagia AA, Murray GK, Robbins TW (2010) Learning and cognitive flexibility: frontostriatal function and monoaminergic modulation. Curr Opin Neurobiol 20(2):199–204

    Article  CAS  PubMed  Google Scholar 

  • Kennett A, Heal DJ, Wonnacott S (2012) Pharmacological differences between rat frontal cortex and hippocampus in the nicotinic modulation of noradrenaline release implicate distinct receptor subtypes. Nicotine Tob Res 14(11):1339–1345

    Article  CAS  PubMed  Google Scholar 

  • Kolisnyk B, Al-Onaizi MA, Prado VF, Prado MA (2015) Alpha7 nicotinic ACh receptor-deficient mice exhibit sustained attention impairments that are reversed by beta2 nicotinic ACh receptor activation. Br J Pharmacol 172(20):4919–4931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lenz RA, Garimella T, Dutta S, Locke C, Baker JD, Wesnes K et al (2009) ABT-089 demonstrates efficacy in a human model of cognition and good tolerability in subjects with Alzheimer’s disease taking acetylcholinesterase inhibitors. Alzheim Dement J Alzheim Assoc 5(4):157

    Article  Google Scholar 

  • Livingstone PD, Wonnacott S (2009) Nicotinic acetylcholine receptors and the ascending dopamine pathways. Biochem Pharmacol 78(7):744–755

    Article  CAS  PubMed  Google Scholar 

  • Maris E, Oostenveld R (2007) Nonparametric statistical testing of EEG- and MEG-data. J Neurosci Methods 164(1):177–190

    Article  PubMed  Google Scholar 

  • Martin-Ruiz CM, Haroutunian VH, Long P, Young AH, Davis KL, Perry EK, Court JA (2003) Dementia rating and nicotinic receptor expression in the prefrontal cortex in schizophrenia. Biol Psychiatry 54(11):1222–1233

    Article  CAS  PubMed  Google Scholar 

  • McLean SL, Grayson B, Idris NF, Lesage AS, Pemberton DJ, Mackie C et al (2011) Activation of alpha7 nicotinic receptors improves phencyclidine-induced deficits in cognitive tasks in rats: implications for therapy of cognitive dysfunction in schizophrenia. Eur Neuropsychopharmacol 21(4):333–343

    Article  CAS  PubMed  Google Scholar 

  • McLean SL, Idris NF, Grayson B, Gendle DF, Mackie C, Lesage AS et al (2012) PNU-120596, a positive allosteric modulator of alpha7 nicotinic acetylcholine receptors, reverses a sub-chronic phencyclidine-induced cognitive deficit in the attentional set-shifting task in female rats. J Psychopharmacol 26(9):1265–1270

    Article  CAS  PubMed  Google Scholar 

  • Millan MJ, Agid Y, Brune M, Bullmore ET, Carter CS, Clayton NS et al (2012) Cognitive dysfunction in psychiatric disorders: characteristics, causes and the quest for improved therapy. Nat Rev Drug Discov 11(2):141–168

    Article  CAS  PubMed  Google Scholar 

  • Muir JL, Dunnett SB, Robbins TW, Everitt BJ (1992) Attentional functions of the forebrain cholinergic systems - effects of intraventricular hemicholinium, physostigmine, basal forebrain lesions and intracortical grafts on a multiple-choice serial reaction-time-task. Exp Brain Res 89(3):611–622

    Article  CAS  PubMed  Google Scholar 

  • Oemisch M, Westendorff S, Azimi M, Hassani SA, Ardid S, Tiesinga P et al (2019) Feature specific prediction errors and surprise across macaque Fronto-striatal circuits. Nat Commun 10(176):1–15

    CAS  Google Scholar 

  • Paolone G, Angelakos CC, Meyer PJ, Robinson TE, Sarter M (2013) Cholinergic control over attention in rats prone to attribute incentive salience to reward cues. J Neurosci 33(19):8321–8335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parikh V, Kozak R, Martinez V, Sarter M (2007) Prefrontal acetylcholine release controls cue detection on multiple timescales. Neuron 56(1):141–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parikh V, Ji J, Decker MW, Sarter M (2010) Prefrontal beta2 subunit-containing and alpha7 nicotinic acetylcholine receptors differentially control glutamatergic and cholinergic signaling. J Neurosci 30(9):3518–3530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pidoplichko VI, DeBiasi M, Williams JT, Dani JA (1997) Nicotine activates and desensitizes midbrain dopamine neurons. Nature 390(6658):401–404

    Article  CAS  PubMed  Google Scholar 

  • Poorthuis RB, Bloem B, Schak B, Wester J, de Kock CP, Mansvelder HD (2013) Layer-specific modulation of the prefrontal cortex by nicotinic acetylcholine receptors. Cereb Cortex 23(1):148–161

    Article  PubMed  Google Scholar 

  • Prendergast MA, Jackson WJ, Terry AV Jr, Decker MW, Arneric SP, Buccafusco JJ (1998a) Central nicotinic receptor agonists ABT-418, ABT-089, and (-)-nicotine reduce distractibility in adult monkeys. Psychopharmacology 136(1):50–58

    Article  CAS  PubMed  Google Scholar 

  • Prendergast MA, Terry AV Jr, Buccafusco JJ (1998b) Effects of chronic, low-level organophosphate exposure on delayed recall, discrimination, and spatial learning in monkeys and rats. Neurotoxicol Teratol 20(2):115–122

    Article  CAS  PubMed  Google Scholar 

  • Quarta D, Naylor CG, Barik J, Fernandes C, Wonnacott S, Stolerman IP (2009) Drug discrimination and neurochemical studies in alpha7 null mutant mice: tests for the role of nicotinic alpha7 receptors in dopamine release. Psychopharmacology 203(2):399–410

    Article  CAS  PubMed  Google Scholar 

  • Rezvani AH, Kholdebarin E, Brucato FH, Callahan PM, Lowe DA, Levin ED (2009) Effect of R3487/MEM3454, a novel nicotinic alpha7 receptor partial agonist and 5-HT3 antagonist on sustained attention in rats. Prog Neuro-Psychopharmacol Biol Psychiatry 33(2):269–275

    Article  CAS  Google Scholar 

  • Roberts AC, Robbins TW, Everitt BJ, Jones GH, Sirkia TE, Wilkinson J, Page K (1990) The effects of excitotoxic lesions of the basal forebrain on the acquisition, retention and serial reversal of visual discriminations in marmosets. Neuroscience 34(2):311–329

    Article  CAS  PubMed  Google Scholar 

  • Romberg C, Bussey TJ, Saksida LM (2013) Paying more attention to attention: towards more comprehensive cognitive translation using mouse models of Alzheimer’s disease. Brain Res Bull 92:49–55

    Article  PubMed  Google Scholar 

  • Rombouts JO, Bohte SM, Roelfsema PR (2015) How attention can create synaptic tags for the learning of working memories in sequential tasks. PLoS Comput Biol 11(3):e1004060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rueter LE, Anderson DJ, Briggs CA, Donnelly-Roberts DL, Gintant GA, Gopalakrishnan M, Lin NH, Osinski MA, Reinhart GA, Buckley MJ, Martin RL, McDermott J, Preusser LC, Seifert TR, Su Z, Cox BF, Decker MW, Sullivan JP (2004) ABT-089: pharmacological properties of a neuronal nicotinic acetylcholine receptor agonist for the potential treatment of cognitive disorders. CNS Drug Rev 10(2):167–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadigh-Eteghad S, Talebi M, Mahmoudi J, Babri S, Shanehbandi D (2015) Selective activation of alpha7 nicotinic acetylcholine receptor by PHA-543613 improves Abeta25-35-mediated cognitive deficits in mice. Neuroscience 298:81–93

    Article  CAS  PubMed  Google Scholar 

  • Sarter M, Bruno JP, Givens B (2003) Attentional functions of cortical cholinergic inputs: what does it mean for learning and memory? Neurobiol Learn Mem 80(3):245–256

    Article  CAS  PubMed  Google Scholar 

  • Sarter M, Lustig C, Blakely RD, Koshy Cherian A (2016) Cholinergic genetics of visual attention: human and mouse choline transporter capacity variants influence distractibility. J Physiol Paris 110(1–2):10–18

    Article  PubMed  PubMed Central  Google Scholar 

  • Schneider JS, Tinker JP, Van Velson M, Menzaghi F, Lloyd GK (1999) Nicotinic acetylcholine receptor agonist SIB-1508Y improves cognitive functioning in chronic low-dose MPTP-treated monkeys. J Pharmacol Exp Ther 290(2):731–739

    CAS  PubMed  Google Scholar 

  • Schneider JS, Tinker JP, Menzaghi F, Lloyd GK (2003) The subtype-selective nicotinic acetylcholine receptor agonist SIB-1553A improves both attention and memory components of a spatial working memory task in chronic low dose 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated monkeys. J Pharmacol Exp Ther 306(1):401–406

    Article  CAS  PubMed  Google Scholar 

  • Smith AC, Frank LM, Wirth S, Yanike M, Hu D, Kubota Y et al (2004) Dynamic analysis of learning in behavioral experiments. J Neurosci 24(2):447–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • St Peters M, Demeter E, Lustig C, Bruno JP, Sarter M (2011) Enhanced control of attention by stimulating mesolimbic-corticopetal cholinergic circuitry. J Neurosci 31(26):9760–9771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Yang Y, Galvin VC, Yang S, Arnsten AF, Wang M (2017) Nicotinic alpha4beta2 cholinergic receptor influences on dorsolateral prefrontal cortical neuronal firing during a working memory task. J Neurosci 37(21):5366–5377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanner JA, Chenoweth MJ, Tyndale RF (2015) Pharmacogenetics of nicotine and associated smoking behaviors. Curr Top Behav Neurosci 23:37–86

    Article  CAS  PubMed  Google Scholar 

  • Teodoro R, Scheunemann M, Deuther-Conrad W, Wenzel B, Fasoli FM, Gotti C, Kranz M, Donat CK, Patt M, Hillmer A, Zheng MQ, Peters D, Steinbach J, Sabri O, Huang Y, Brust P (2015) A promising PET tracer for imaging of alpha(7) nicotinic acetylcholine receptors in the brain: design, synthesis, and in vivo evaluation of a dibenzothiophene-based radioligand. Molecules 20(10):18387–18421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terry AV Jr, Plagenhoef M, Callahan PM (2016) Effects of the nicotinic agonist varenicline on the performance of tasks of cognition in aged and middle-aged rhesus and pigtail monkeys. Psychopharmacology 233(5):761–771

    Article  CAS  PubMed  Google Scholar 

  • Thiele A, Bellgrove MA (2018) Neuromodulation of attention. Neuron 97(4):769–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomsen MS, Hansen HH, Timmerman DB, Mikkelsen JD (2010) Cognitive improvement by activation of alpha7 nicotinic acetylcholine receptors: from animal models to human pathophysiology. Curr Pharm Des 16(3):323–343

    Article  CAS  PubMed  Google Scholar 

  • Toyohara J, Hashimoto K (2010) Alpha7 nicotinic receptor agonists: potential therapeutic drugs for treatment of cognitive impairments in schizophrenia and Alzheimer’s disease. Open Med Chem J 4:37–56

    CAS  PubMed  PubMed Central  Google Scholar 

  • van der Meulen JA, Joosten RN, de Bruin JP, Feenstra MG (2007) Dopamine and noradrenaline efflux in the medial prefrontal cortex during serial reversals and extinction of instrumental goal-directed behavior. Cereb Cortex 17(6):1444–1453

    Article  PubMed  Google Scholar 

  • Wadenberg MG, Manetti D, Romanelli MN, Arias HR (2017) Significance of the nicotinic alpha7 receptor in cognition and antipsychotic-like behavior in the rat. Behav Brain Res 333:129–134

    Article  CAS  PubMed  Google Scholar 

  • Wallace TL, Bertrand D (2013) Importance of the nicotinic acetylcholine receptor system in the prefrontal cortex. Biochem Pharmacol 85(12):1713–1720

    Article  CAS  PubMed  Google Scholar 

  • Wallace TL, Ballard TM, Pouzet B, Riedel WJ, Wettstein JG (2011a) Drug targets for cognitive enhancement in neuropsychiatric disorders. Pharmacol Biochem Behav 99(2):130–145

    Article  CAS  PubMed  Google Scholar 

  • Wallace TL, Callahan PM, Tehim A, Bertrand D, Tombaugh G, Wang S et al (2011b) RG3487, a novel nicotinic alpha7 receptor partial agonist, improves cognition and sensorimotor gating in rodents. J Pharmacol Exp Ther 336(1):242–253

    Article  CAS  PubMed  Google Scholar 

  • Wilens TE, Biederman J, Spencer TJ, Bostic J, Prince J, Monuteaux MC, Soriano J, Fine C, Abrams A, Rater M, Polisner D (1999) A pilot controlled clinical trial of ABT-418, a cholinergic agonist, in the treatment of adults with attention deficit hyperactivity disorder. Am J Psychiatry 156(12):1931–1937

    CAS  PubMed  Google Scholar 

  • Wishka DG, Walker DP, Yates KM, Reitz SC, Jia S, Myers JK, Olson KL, Jacobsen EJ, Wolfe ML, Groppi VE, Hanchar AJ, Thornburgh BA, Cortes-Burgos LA, Wong EH, Staton BA, Raub TJ, Higdon NR, Wall TM, Hurst RS, Walters RR, Hoffmann WE, Hajos M, Franklin S, Carey G, Gold LH, Cook KK, Sands SB, Zhao SX, Soglia JR, Kalgutkar AS, Arneric SP, Rogers BN (2006) Discovery of N-[(3R)-1-azabicyclo[2.2.2]oct-3-yl]furo[2,3-c]pyridine-5-carboxamide, an agonist of the alpha7 nicotinic acetylcholine receptor, for the potential treatment of cognitive deficits in schizophrenia: synthesis and structure--activity relationship. J Med Chem 49(14):4425–4436

    Article  CAS  PubMed  Google Scholar 

  • Womelsdorf T, Everling S (2015) Long-range attention networks: circuit motifs underlying endogenously controlled stimulus selection. Trends Neurosci 38(11):682–700

    Article  CAS  PubMed  Google Scholar 

  • Wong DF, Kuwabara H, Horti AG, Roberts JM, Nandi A, Casella N et al (2018) PET brain imaging of alpha7-nAChR with [18F]ASEM: reproducibility, occupancy, receptor density, and changes in schizophrenia. Int J Neuropsychopharmacol

  • Wood C, Kohli S, Malcolm E, Allison C, Shoaib M (2016) Subtype-selective nicotinic acetylcholine receptor agonists can improve cognitive flexibility in an attentional set shifting task. Neuropharmacology 105:106–113

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Paspalas CD, Jin LE, Picciotto MR, Arnsten AF, Wang M (2013) Nicotinic alpha7 receptors enhance NMDA cognitive circuits in dorsolateral prefrontal cortex. Proc Natl Acad Sci U S A 110(29):12078–12083

    Article  PubMed  PubMed Central  Google Scholar 

  • Young JW, Meves JM, Geyer MA (2013) Nicotinic agonist-induced improvement of vigilance in mice in the 5-choice continuous performance test. Behav Brain Res 240:119–133

    Article  CAS  PubMed  Google Scholar 

  • Zar JH (2010). Biostatistical Analysis Pearson Prentice-Hall: upper Saddle River, NJ. Vol 5th

Download references

Acknowledgments

The authors would like to thank Hongying Wang for technical support.

Funding

This work was supported by a grant from the Canadian Institutes of Health Research, CIHR Grant MOP_102482 (T.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thilo Womelsdorf.

Ethics declarations

All research procedures were reviewed and approved by the York University Council on Animal Care and were in accordance with the Canadian Council on Animal Care guidelines.

Conflict of interest

The authors declare that they have no conflict of interest.

Disclaimer

The funders had no role in study design, data collection and analysis, the decision to publish, or the preparation of this manuscript.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azimi, M., Oemisch, M. & Womelsdorf, T. Dissociation of nicotinic α7 and α4/β2 sub-receptor agonists for enhancing learning and attentional filtering in nonhuman primates. Psychopharmacology 237, 997–1010 (2020). https://doi.org/10.1007/s00213-019-05430-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-019-05430-w

Keywords

Navigation