Skip to main content
Log in

Glucocorticoid receptor activation induces decrease of hippocampal astrocyte number in rats

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

The decrease of astrocyte number and hypothalamic-pituitary-adrenal (HPA) axis overactivity are observed in individuals with major depressive disorder. Elevated levels of glucocorticoids induced by hyperactivation of the HPA axis may result in glucocorticoid receptor (GR) activation. However, it is unclear whether there is a direct link between GR activation and the decrease of astrocyte number.

Methods

Animals were exposed to chronic unpredictable stress (CUS) for 28 days and treated with continuous subcutaneous injections of vehicle or corticosterone (CORT; 40 mg/kg/day) for 21 days. We then administered mifepristone on day 21 after CUS and on day 18 after the CORT treatment. We observed behavioral deficits in the sucrose preference test, open field test, and forced swim test. Protein expression was analyzed using immunofluorescence (IF) and western blot (WB).

Results

Animals exposed to CUS exhibited behavioral deficits in tests measuring anhedonia, anxiety, and despair state. They also had decreases in glial fibrillary acidic protein (GFAP) expression and numbers of GFAP-positive cells in the hippocampus. The behavioral and cellular alterations induced by CUS were reversed by subchronic treatment with the GR antagonist mifepristone. We also found that the subcutaneous injection of glucocorticoids may induce depression-like behavior and reduce GFAP protein expression in rats, which was similarly reversed by mifepristone.

Conclusions

These findings provide experimental evidence that GR activation due to elevated CORT levels induces the decrease of hippocampal astrocyte number in rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3
Fig 4
Fig 5
Fig 6
Fig 7
Fig 8

Similar content being viewed by others

References

  • Anacker C, Zunszain PA, Carvalho LA, Pariante CM (2011) The glucocorticoid receptor: pivot of depression and of antidepressant treatment? Psychoneuroendocrinology 36:415–425

    Article  CAS  Google Scholar 

  • Anthes E (2014) Depression: a change of mind. Nature 515:185–187

    Article  CAS  Google Scholar 

  • Araya-Callis C, Hiemke C, Abumaria N, Flugge G (2012) Chronic psychosocial stress and citalopram modulate the expression of the glial proteins GFAP and NDRG2 in the hippocampus. Psychopharmacology 224:209–222

    Article  CAS  Google Scholar 

  • Banasr M, Duman RS (2008) Glial loss in the prefrontal cortex is sufficient to induce depressive-like behaviors. Biol Psychiatry 64:863–870

    Article  Google Scholar 

  • Banasr M, Valentine GW, Li X-Y, Gourley SL, Taylor JR, Duman RS (2007) Chronic Unpredictable Stress Decreases Cell Proliferation in the Cerebral Cortex of the Adult Rat. Biol Psychiatry 62:496–504

    Article  CAS  Google Scholar 

  • Banasr M, Chowdhury GM, Terwilliger R, Newton SS, Duman RS, Behar KL, Sanacora G (2010) Glial pathology in an animal model of depression: reversal of stress-induced cellular, metabolic and behavioral deficits by the glutamate-modulating drug riluzole. Mol Psychiatry 15:501–511

    Article  CAS  Google Scholar 

  • Belanoff JK, Flores BH, Kalezhan M, Sund B, Schatzberg AF (2001) Rapid reversal of psychotic depression using mifepristone. J Clin Psychopharmacol 21:516–521

    Article  CAS  Google Scholar 

  • Belanoff JK, Rothschild AJ, Cassidy F, DeBattista C, Baulieu E-E, Schold C, Schatzberg AF (2002) An open label trial of C-1073 (mifepristone) for psychotic major depression*. Biol Psychiatry 52:386–392

    Article  CAS  Google Scholar 

  • Bener D, Wohlman A, Itzik A, Yirmiya R, Ben-Hur T, Weidenfeld J (2007) Glucocorticoid resistance following herpes simplex-1 infection: role of hippocampal glucocorticoid receptors. Neuroendocrinology 85:207–215

    Article  CAS  Google Scholar 

  • Blasey CM, Block TS, Belanoff JK, Roe RL (2011) Efficacy and safety of mifepristone for the treatment of psychotic depression. J Clin Psychopharmacol 31:436–440

    Article  CAS  Google Scholar 

  • Boldrini M, Underwood MD, Hen R, Rosoklija GB, Dwork AJ, John Mann J, Arango V (2009) Antidepressants increase neural progenitor cells in the human hippocampus. Neuropsychopharmacology 34:2376–2389

    Article  CAS  Google Scholar 

  • Carroll BJ, Rubin RT (2006) Is mifepristone useful in psychotic depression? Neuropsychopharmacology 31:2793–2794 author reply 2795-7

    Article  CAS  Google Scholar 

  • Cheng T, Dimitrov S, Pruitt C, Hong S (2016) Glucocorticoid mediated regulation of inflammation in human monocytes is associated with depressive mood and obesity. Psychoneuroendocrinology 66:195–204

    Article  CAS  Google Scholar 

  • Chijiwa T, Oka T, Lkhagvasuren B, Yoshihara K, Sudo N (2015) Prior chronic stress induces persistent polyI:C-induced allodynia and depressive-like behavior in rats: Possible involvement of glucocorticoids and microglia. Physiol Behav 147:264–273

    Article  CAS  Google Scholar 

  • Czeh B, Di Benedetto B (2013) Antidepressants act directly on astrocytes: evidences and functional consequences. European neuropsychopharmacology: the journal of the European College of. Neuropsychopharmacology 23:171–185

    Article  CAS  Google Scholar 

  • Czeh B, Simon M, Schmelting B, Hiemke C, Fuchs E (2006) Astroglial plasticity in the hippocampus is affected by chronic psychosocial stress and concomitant fluoxetine treatment. Neuropsychopharmacology: official publication of the American College of. Neuropsychopharmacology 31:1616–1626

    Article  CAS  Google Scholar 

  • Datson NA, Speksnijder N, Mayer JL, Steenbergen PJ, Korobko O, Goeman J, de Kloet ER, Joels M, Lucassen PJ (2012) The transcriptional response to chronic stress and glucocorticoid receptor blockade in the hippocampal dentate gyrus. Hippocampus 22:359–371

    Article  CAS  Google Scholar 

  • DeBattista C, Belanoff J, Glass S, Khan A, Horne RL, Blasey C, Carpenter LL, Alva G (2006) Mifepristone versus placebo in the treatment of psychosis in patients with psychotic major depression. Biol Psychiatry 60:1343–1349

    Article  CAS  Google Scholar 

  • Dirven BCJ, Homberg JR, Kozicz T, Henckens M (2017) Epigenetic programming of the neuroendocrine stress response by adult life stress. J Mol Endocrinol 59:R11–r31

    Article  CAS  Google Scholar 

  • Dong L, Wang S, Li Y, Zhao Z, Shen Y, Liu L, Xu G, Ma C, Li S, Zhang X, Cong B (2017) RU486 Reverses Emotional Disorders by Influencing Astrocytes and Endoplasmic Reticulum Stress in Chronic Restraint Stress Challenged Rats. Cellular physiology and biochemistry: international journal of experimental cellular physiology, biochemistry, and. Pharmacology 42:1098–1108

    CAS  Google Scholar 

  • Fitzsimons CP, Herbert J, Schouten M, Meijer OC, Lucassen PJ, Lightman S (2016) Circadian and ultradian glucocorticoid rhythmicity: Implications for the effects of glucocorticoids on neural stem cells and adult hippocampal neurogenesis. Front Neuroendocrinol 41:44–58

    Article  CAS  Google Scholar 

  • Flores BH, Kenna H, Keller J, Solvason HB, Schatzberg AF (2006) Clinical and biological effects of mifepristone treatment for psychotic depression. Neuropsychopharmacology: official publication of the American College of. Neuropsychopharmacology 31:628–636

    Article  CAS  Google Scholar 

  • Gao SF, Lu YR, Shi LG, Wu XY, Sun B, Fu XY, Luo JH, Bao AM (2014) Nitric oxide synthase and nitric oxide alterations in chronically stressed rats: a model for nitric oxide in major depressive disorder. Psychoneuroendocrinology 47:136–140

    Article  CAS  Google Scholar 

  • Gao L, Guan W, Wang M, Wang H, Yu J, Liu Q, Qiu B, Yu Y, Ping Y, Bian X, Shen L, Pei G (2017) Direct Generation of Human Neuronal Cells from Adult Astrocytes by Small Molecules. Stem Cell Reports 8:538–547

    Article  CAS  Google Scholar 

  • Garcia-Caceres C, Lagunas N, Calmarza-Font I, Azcoitia I, Diz-Chaves Y, Garcia-Segura LM, Baquedano E, Frago LM, Argente J, Chowen JA (2010) Gender differences in the long-term effects of chronic prenatal stress on the HPA axis and hypothalamic structure in rats. Psychoneuroendocrinology 35:1525–1535

    Article  CAS  Google Scholar 

  • Gong MJ, Han B, Wang SM, Liang SW, Zou ZJ (2016) Icariin reverses corticosterone-induced depression-like behavior, decrease in hippocampal brain-derived neurotrophic factor (BDNF) and metabolic network disturbances revealed by NMR-based metabonomics in rats. J Pharm Biomed Anal 123:63–73

    Article  CAS  Google Scholar 

  • Grippo AJ, Francis J, Beltz TG, Felder RB, Johnson AK (2005) Neuroendocrine and cytokine profile of chronic mild stress-induced anhedonia. Physiol Behav 84:697–706

    Article  CAS  Google Scholar 

  • Hamidi M, Drevets WC, Price JL (2004) Glial reduction in amygdala in major depressive disorder is due to oligodendrocytes. Biol Psychiatry 55:563–569

    Article  Google Scholar 

  • Harrison PJ (2002) The neuropathology of primary mood disorder. Brain J Neurol 125:1428–1449

    Article  Google Scholar 

  • Hazra S, Kumar S, Saha GK, Mondal AC (2017) Reversion of BDNF, Akt and CREB in Hippocampus of Chronic Unpredictable Stress Induced Rats: Effects of Phytochemical, Bacopa Monnieri. Psychiatry Investig 14:74–80

    Article  CAS  Google Scholar 

  • Hu P, Oomen C, van Dam AM, Wester J, Zhou JN, Joels M, Lucassen PJ (2012) A single-day treatment with mifepristone is sufficient to normalize chronic glucocorticoid induced suppression of hippocampal cell proliferation. PLoS One 7:e46224

    Article  CAS  Google Scholar 

  • Iwata M, Shirayama Y, Ishida H, Hazama GI, Nakagome K (2011) Hippocampal astrocytes are necessary for antidepressant treatment of learned helplessness rats. Hippocampus 21:877–884

    CAS  Google Scholar 

  • Iyo AH, Feyissa AM, Chandran A, Austin MC, Regunathan S, Karolewicz B (2010) Chronic corticosterone administration down-regulates metabotropic glutamate receptor 5 protein expression in the rat hippocampus. Neuroscience 169:1567–1574

    Article  CAS  Google Scholar 

  • Jo WK, Zhang Y, Emrich HM, Dietrich DE (2015) Glia in the cytokine-mediated onset of depression: fine tuning the immune response. Front Cell Neurosci 9:268

    Article  Google Scholar 

  • Joels M, Karst H, Krugers HJ, Lucassen PJ (2007) Chronic stress: implications for neuronal morphology, function and neurogenesis. Front Neuroendocrinol 28:72–96

    Article  Google Scholar 

  • Juif PE, Anton F, Hanesch U (2012) Pain behavior and spinal cell activation due to carrageenan-induced inflammation in two inbred rat strains with differential hypothalamic-pituitary-adrenal axis reactivity. Physiol Behav 105:901–908

    Article  CAS  Google Scholar 

  • Kalueff AV, Gallagher PS, Murphy DL (2006) Are serotonin transporter knockout mice ‘depressed’?: hypoactivity but no anhedonia. Neuroreport 17:1347–1351

    Article  CAS  Google Scholar 

  • Karisetty BC, Maitra S, Wahul AB, Musalamadugu A, Khandelwal N, Guntupalli S, Garikapati R, Jhansyrani T, Kumar A, Chakravarty S (2017) Differential effect of chronic stress on mouse hippocampal memory and affective behavior: Role of major ovarian hormones. Behav Brain Res 318:36–44

    Article  CAS  Google Scholar 

  • Karst H, Joels M (2007) Brief RU 38486 treatment normalizes the effects of chronic stress on calcium currents in rat hippocampal CA1 neurons. Neuropsychopharmacology 32:1830–1839

    Article  CAS  Google Scholar 

  • Katz RJ, Roth KA, Carroll BJ (1981) Acute and chronic stress effects on open field activity in the rat: implications for a model of depression. Neurosci Biobehav Rev 5:247–251

    Article  CAS  Google Scholar 

  • Kino T (2015) Stress, glucocorticoid hormones, and hippocampal neural progenitor cells: implications to mood disorders. Front Physiol 6:230

    Article  Google Scholar 

  • Kott JM, Mooney-Leber SM, Shoubah FA, Brummelte S (2016) Effectiveness of different corticosterone administration methods to elevate corticosterone serum levels, induce depressive-like behavior, and affect neurogenesis levels in female rats. Neuroscience 312:201–214

    Article  CAS  Google Scholar 

  • Krugers HJ, Goltstein PM, van der Linden S, Joels M (2006) Blockade of glucocorticoid receptors rapidly restores hippocampal CA1 synaptic plasticity after exposure to chronic stress. Eur J Neurosci 23:3051–3055

    Article  CAS  Google Scholar 

  • Kvarta MD, Bradbrook KE, Dantrassy HM, Bailey AM, Thompson SM (2015) Corticosterone mediates the synaptic and behavioral effects of chronic stress at rat hippocampal temporoammonic synapses. J Neurophysiol 114:1713–1724

    Article  CAS  Google Scholar 

  • Lante F, Chafai M, Raymond EF, Pereira AR, Mouska X, Kootar S, Barik J, Bethus I, Marie H (2015) Subchronic glucocorticoid receptor inhibition rescues early episodic memory and synaptic plasticity deficits in a mouse model of Alzheimer's disease. Neuropsychopharmacology 40:1772–1781

    Article  CAS  Google Scholar 

  • Lenk K, Raisanen E, Hyttinen JA, Lenk K, Raisanen E, Hyttinen JA, Lenk K, Hyttinen JA, Raisanen E (2016) Understanding the role of astrocytic GABA in simulated neural networks. Conference proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual Conference 2016: 6121-6124.

  • Li LF, Yang J, Ma SP, Qu R (2013) Magnolol treatment reversed the glial pathology in an unpredictable chronic mild stress-induced rat model of depression. Eur J Pharmacol 711:42–49

    Article  CAS  Google Scholar 

  • Liu Q, Li B, Zhu HY, Wang YQ, Yu J, Wu GC (2009) Clomipramine treatment reversed the glial pathology in a chronic unpredictable stress-induced rat model of depression. Eur Neuropsychopharmacol 19:796–805

    Article  CAS  Google Scholar 

  • Liu Q, Li B, Zhu HY, Wang YQ, Yu J, Wu GC (2011) Glia atrophy in the hippocampus of chronic unpredictable stress-induced depression model rats is reversed by electroacupuncture treatment. J Affect Disord 128:309–313

    Article  CAS  Google Scholar 

  • Lucassen PJ, Pruessner J, Sousa N, Almeida OF, Van Dam AM, Rajkowska G, Swaab DF, Czeh B (2014) Neuropathology of stress. Acta Neuropathol 127:109–135

    Article  CAS  Google Scholar 

  • Mayer JL, Klumpers L, Maslam S, de Kloet ER, Joels M, Lucassen PJ (2006) Brief treatment with the glucocorticoid receptor antagonist mifepristone normalises the corticosterone-induced reduction of adult hippocampal neurogenesis. J Neuroendocrinol 18:629–631

    Article  CAS  Google Scholar 

  • Meyer M, Gonzalez Deniselle MC, Hunt H, de Kloet ER, De Nicola AF (2014) The selective glucocorticoid receptor modulator CORT108297 restores faulty hippocampal parameters in Wobbler and corticosterone-treated mice. J Steroid Biochem Mol Biol 143:40–48

    Article  CAS  Google Scholar 

  • Nichols NR, Osterburg HH, Masters JN, Millar SL, Finch CE (1990) Messenger RNA for glial fibrillary acidic protein is decreased in rat brain following acute and chronic corticosterone treatment. Brain Res Mol Brain Res 7:1–7

    Article  CAS  Google Scholar 

  • Oliveira TG, Chan RB, Bravo FV, Miranda A, Silva RR, Zhou B, Marques F, Pinto V, Cerqueira JJ, Di Paolo G, Sousa N (2016) The impact of chronic stress on the rat brain lipidome. Mol Psychiatry 21:80–88

    Article  CAS  Google Scholar 

  • Ongur D, Drevets WC, Price JL (1998) Glial reduction in the subgenual prefrontal cortex in mood disorders. Proc Natl Acad Sci U S A 95:13290–13295

    Article  CAS  Google Scholar 

  • Oomen CA, Mayer JL, de Kloet ER, Joels M, Lucassen PJ (2007) Brief treatment with the glucocorticoid receptor antagonist mifepristone normalizes the reduction in neurogenesis after chronic stress. Eur J Neurosci 26:3395–3401

    Article  Google Scholar 

  • Rajkowska G, Miguel-Hidalgo JJ (2007) Gliogenesis and glial pathology in depression. CNS Neurol Disord Drug Targets 6:219–233

    Article  CAS  Google Scholar 

  • Rajkowska G, Miguel-Hidalgo JJ, Wei J, Dilley G, Pittman SD, Meltzer HY, Overholser JC, Roth BL, Stockmeier CA (1999) Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biol Psychiatry 45:1085–1098

    Article  CAS  Google Scholar 

  • Riaz MS, Bohlen MO, Gunter BW, Quentin H, Stockmeier CA, Paul IA (2015) Attenuation of social interaction-associated ultrasonic vocalizations and spatial working memory performance in rats exposed to chronic unpredictable stress. Physiol Behav 152:128–134

    Article  CAS  Google Scholar 

  • Rimmerman N, Schottlender N, Reshef R, Dan-Goor N, Yirmiya R (2017) The hippocampal transcriptomic signature of stress resilience in mice with microglial fractalkine receptor (CX3CR1) deficiency. Brain Behav Immun 61:184–196

    Article  CAS  Google Scholar 

  • Simpson GM, El Sheshai A, Loza N, Kingsbury SJ, Fayek M, Rady A, Fawzy W (2005) An 8-week open-label trial of a 6-day course of mifepristone for the treatment of psychotic depression. J Clin Psychiatry 66:598–602

    Article  CAS  Google Scholar 

  • Sousa N, Almeida OF (2012) Disconnection and reconnection: the morphological basis of (mal) adaptation to stress. Trends Neurosci 35:742–751

    Article  CAS  Google Scholar 

  • Sousa N, Lukoyanov NV, Madeira MD, Almeida OF, Paula-Barbosa MM (2000) Reorganization of the morphology of hippocampal neurites and synapses after stress-induced damage correlates with behavioral improvement. Neuroscience 97:253–266

    Article  CAS  Google Scholar 

  • Spiga F, Walker JJ, Terry JR, Lightman SL (2014) HPA axis-rhythms. Compr Physiol 4:1273–1298

    Article  Google Scholar 

  • Sun JD, Liu Y, Yuan YH, Li J, Chen NH (2012) Gap junction dysfunction in the prefrontal cortex induces depressive-like behaviors in rats. Neuropsychopharmacology: official publication of the American College of. Neuropsychopharmacology 37:1305–1320

    Article  CAS  Google Scholar 

  • Tynan RJ, Beynon SB, Hinwood M, Johnson SJ, Nilsson M, Woods JJ, Walker FR (2013) Chronic stress-induced disruption of the astrocyte network is driven by structural atrophy and not loss of astrocytes. Acta Neuropathol 126:75–91

    Article  CAS  Google Scholar 

  • Wang Q, Verweij EW, Krugers HJ, Joels M, Swaab DF, Lucassen PJ (2014) Distribution of the glucocorticoid receptor in the human amygdala; changes in mood disorder patients. Brain Struct Funct 219:1615–1626

    Article  CAS  Google Scholar 

  • Willner P (1997) Validity, reliability and utility of the chronic mild stress model of depression: a 10-year review and evaluation. Psychopharmacology 134:319–329

    Article  CAS  Google Scholar 

  • Woolley CS, Gould E, McEwen BS (1990) Exposure to excess glucocorticoids alters dendritic morphology of adult hippocampal pyramidal neurons. Brain Res 531:225–231

    Article  CAS  Google Scholar 

  • Wu LM, Han H, Wang QN, Hou HL, Tong H, Yan XB, Zhou JN (2007) Mifepristone repairs region-dependent alteration of synapsin I in hippocampus in rat model of depression. Neuropsychopharmacology: official publication of the American College of. Neuropsychopharmacology 32:2500–2510

    Article  CAS  Google Scholar 

  • Wulsin AC, Herman JP, Solomon MB (2010) Mifepristone decreases depression-like behavior and modulates neuroendocrine and central hypothalamic-pituitary-adrenocortical axis responsiveness to stress. Psychoneuroendocrinology 35:1100–1112

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (81573636, 81773924, U1402221, 81560663), Beijing Natural Science Foundation (7182114), PUMC Youth Fund (3332016058), CAMS Innovation Fund for Medical Sciences (CIFMS) (2016-I2M-1-004), the Scientific Research Foundation of the Higher Education Institutions of Hunan Province (15K091), Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study (BZ0150), PUMC Graduate Education and Teaching Reform Project (10023201600801), The State Key Laboratory Fund Open Project (GTZK201610), and China Postdoctoral Science Foundation (2013M540066).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nai-Hong Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lou, YX., Li, J., Wang, ZZ. et al. Glucocorticoid receptor activation induces decrease of hippocampal astrocyte number in rats. Psychopharmacology 235, 2529–2540 (2018). https://doi.org/10.1007/s00213-018-4936-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-018-4936-2

Keywords

Navigation