Skip to main content

Advertisement

Log in

Changes in gene expression and sensitivity of cocaine reward produced by a continuous fat diet

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Preclinical studies report that free access to a high-fat diet (HFD) alters the response to psychostimulants.

Objectives

The aim of the present study was to examine how HFD exposure during adolescence modifies cocaine effects. Gene expression of CB1 and mu-opioid receptors (MOr) in the nucleus accumbens (N Acc) and prefrontal cortex (PFC) and ghrelin receptor (GHSR) in the ventral tegmental area (VTA) were assessed.

Methods

Mice were allowed continuous access to fat from PND 29, and the locomotor (10 mg/kg) and reinforcing effects of cocaine (1 and 6 mg/kg) on conditioned place preference (CPP) were evaluated on PND 69. Another group of mice was exposed to a standard diet until the day of post-conditioning, on which free access to the HFD began.

Results

HFD induced an increase of MOr gene expression in the N Acc, but decreased CB1 receptor in the N Acc and PFC. After fat withdrawal, the reduction of CB1 receptor in the N Acc was maintained. Gene expression of GHSR in the VTA decreased during the HFD and increased after withdrawal. Following fat discontinuation, mice exhibited increased anxiety, augmented locomotor response to cocaine, and developed CPP for 1 mg/kg cocaine. HFD reduced the number of sessions required to extinguish the preference and decreased sensitivity to drug priming-induced reinstatement.

Conclusion

Our results suggest that consumption of a HFD during adolescence induces neurobiochemical changes that increased sensitivity to cocaine when fat is withdrawn, acting as an alternative reward.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abizaid A, Mineur YS, Roth RH, Elsworth JD, Sleeman MW, Picciotto MR, Horvath TL (2011) Reduced locomotor responses to cocaine in ghrelin-deficient mice. Neuroscience 192:500–506

    Article  CAS  PubMed  Google Scholar 

  • Ahrén B, Scheurink AJ (1998) Marked hyperleptinemia after high-fat diet associated with severe glucose intolerance in mice. Eur J Endocrinol 139(4):461–467. doi:10.1530/eje.0.1390461

    Article  PubMed  Google Scholar 

  • Alsiö J, Olszewski PK, Levine AS, Schiöth HB (2012) Feed-forward mechanisms: addiction-like behavioral and molecular adaptations in overeating. Front Neuroendocrinol 33(2):127–139

    Article  PubMed  CAS  Google Scholar 

  • Avena NM (2007) Examining the addictive-like properties of binge eating using an animal model of sugar dependence. Exp Clin Psychopharmacol 15(5):481. doi:10.1037/1064-1297.15.5.481

    Article  PubMed  Google Scholar 

  • Avena NM, Hoebel BG (2003) A diet promoting sugar dependency causes behavioral cross-sensitization to a low dose of amphetamine. Neuroscience 122(1):17–20. doi:10.1016/S0306-4522(03)00502-5

    Article  CAS  PubMed  Google Scholar 

  • Avena NM, Carrillo CA, Needham L, Leibowitz SF, Hoebel BG (2004) Sugar-dependent rats show enhanced intake of unsweetened ethanol. Alcohol 34(2):203–209. doi:10.1016/j.alcohol.2004.09.006

    Article  CAS  PubMed  Google Scholar 

  • Avena NM, Rada P, Hoebel BG (2009) Sugar and fat bingeing have notable differences in addictive-like behavior. J Nutr 139(3):623–628. doi:10.3945/jn.108.097584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baladi MG, Daws LC, France CP (2012) You are what you eat: influence of type and amount of food consumed on central dopamine systems and the behavioral effects of direct-and indirect-acting dopamine receptor agonists. Neuropharmacology 63(1):76–86. doi:10.1016/j.neuropharm.2012.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baladi MG, Horton RE, Owens WA, Daws LC, France CP (2015) Eating high fat chow decreases dopamine clearance in adolescent and adult male rats but selectively enhances the locomotor stimulating effects of cocaine in adolescents. Int J Neuropsychopharmacol 18(7):pyv024. doi:10.1093/ijnp/pyv024

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Balopole DC, Hansult CD, Dorph D (1979) Effect of cocaine on food intake in rats. Psychopharmacology 64(1):121–122. doi:10.1007/BF00427356

    Article  CAS  PubMed  Google Scholar 

  • Bane AJ, McCoy JG, Stump BS, Avery DD (1993) The effects of cocaine on dietary self-selection in female rats. Physiol Behav 54(3):509–513. doi:10.1016/0031-9384(93)90244-A

    Article  CAS  PubMed  Google Scholar 

  • Barnes MJ, Lapanowski K, Conley A, Rafols JA, Jen KC, Dunbar JC (2003) High fat feeding is associated with increased blood pressure, sympathetic nerve activity and hypothalamic mu opioid receptors. Brain Res Bull 61(5):511–519. doi:10.1016/S0361-9230(03)00188-6

    Article  CAS  PubMed  Google Scholar 

  • Beck B, Musse N, Stricker-Krongrad A (2002) Ghrelin, macronutrient intake and dietary preferences in Long–Evans rats. Biochem Biophys Res Commun 292(4):1031–1035

    Article  CAS  PubMed  Google Scholar 

  • Bello NT, Guarda AS, Terrillion CE, Redgrave GW, Coughlin JW, Moran TH (2009) Repeated binge access to a palatable food alters feeding behavior, hormone profile, and hindbrain c-Fos responses to a test meal in adult male rats. Am J Phys Regul Integr Comp Phys 297(3):R622–R631

    CAS  Google Scholar 

  • Bello NT, Coughlin JW, Redgrave GW, Ladenheim EE, Moran TH, Guarda AS (2012) Dietary conditions and highly palatable food access alter rat cannabinoid receptor expression and binding density. Physiol Behav 105(3):720–726. doi:10.1016/j.physbeh.2011.09.021

    Article  CAS  PubMed  Google Scholar 

  • Billing L, Ersche KD (2015) Cocaine’s appetite for fat and the consequences on body weight. The American journal of drug and alcohol abuse 41(2):115–118. doi:10.3109/00952990.2014.966196

    Article  PubMed  Google Scholar 

  • Blanco-Gandía MC, Cantacorps L, Aracil-Fernández A, Montagud-Romero S, Aguilar MA, Manzanares J, Miñarro J, Rodríguez-Arias M (2017) Effects of bingeing on fat during adolescence on the reinforcing effects of cocaine in adult male mice. Neuropharmacology 113:31–44. doi:10.1016/j.neuropharm.2016.09.020

    Article  PubMed  CAS  Google Scholar 

  • Bocarsly ME, Berner LA, Hoebel BG, Avena NM (2011) Rats that binge eat fat-rich food do not show somatic signs or anxiety associated with opiate-like withdrawal: implications for nutrient-specific food addiction behaviors. Physiol Behav 104(5):865–872. doi:10.1016/j.physbeh.2011.05.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carr KD, Tsimberg Y, Berman Y, Yamamoto N (2003) Evidence of increased dopamine receptor signaling in food-restricted rats. Neuroscience 119(4):1157–1167. doi:10.1016/S0306-4522(03)00227-6

    Article  CAS  PubMed  Google Scholar 

  • Chechlacz M, Rotshtein P, Klamer S, Porubska K, Higgs S, Booth D, Fritsche A, Preissl H, Abele H, Birbaumer N, Nouwen A (2009) Diabetes dietary management alters responses to food pictures in brain regions associated with motivation and emotion: a functional magnetic resonance imaging study. Diabetologia 52(3):524–533. doi:10.1007/s00125-008-1253-z

    Article  CAS  PubMed  Google Scholar 

  • Cheer JF, Wassum KM, Heien ML, Phillips PE, Wightman RM (2004) Cannabinoids enhance subsecond dopamine release in the nucleus accumbens of awake rats. J Neurosci 24(18):4393–4400

    Article  CAS  PubMed  Google Scholar 

  • Collins GT, Chen Y, Tschumi C, Rush EL, Mensah A, Koek W, France CP (2015) Effects of consuming a diet high in fat and/or sugar on the locomotor effects of acute and repeated cocaine in male and female C57BL/6J mice. Exp Clin Psychopharmacol 23(4):228. doi:10.1037/pha0000019

    Article  PubMed  PubMed Central  Google Scholar 

  • Cone JJ, Robbins HA, Roitman JD, Roitman MF (2010) Consumption of a high fat diet affects phasic dopamine release and reuptake in the nucleus accumbens. Appetite 54(3):640. doi:10.1016/j.appet.2010.04.046

    Article  Google Scholar 

  • Cota D, Tschöp MH, Horvath TL, Levine AS (2006) Cannabinoids, opioids and eating behavior: the molecular face of hedonism? Brain Res Rev 51(1):85–107. doi:10.1016/j.brainresrev.2005.10.004

    Article  CAS  PubMed  Google Scholar 

  • Cottone P, Sabino V, Roberto M, Bajo M, Pockros L, Frihauf JB, Conti B (2009) CRF system recruitment mediates dark side of compulsive eating. Proc Natl Acad Sci 106(47):20016–20020. doi:10.1073/pnas.0908789106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cristino L, Becker T, Marzo V (2014) Endocannabinoids and energy homeostasis: an update. Biofactors 40(4):389–397. doi:10.1002/biof.1168

    Article  CAS  PubMed  Google Scholar 

  • Davis KW, Wellman PJ, Clifford PS (2007) Augmented cocaine conditioned place preference in rats pretreated with systemic ghrelin. Regul Pept 140(3):148–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis JF, Tracy AL, Schurdak JD, Tschöp MH, Lipton JW, Clegg DJ, Benoit SC (2008) Exposure to elevated levels of dietary fat attenuates psychostimulant reward and mesolimbic dopamine turnover in the rat. Behav Neurosci 122(6). doi:10.1037/a0013111

  • Davis LM, Michaelides M, Cheskin LJ, Moran TH, Aja S, Watkins PA, Pei Z, Contoreggi C, McCullough K, Hope B, Wang GJ, Volkow ND, Thanos PK (2009) Bromocriptine administration reduces hyperphagia and adiposity and differentially affects dopamine D2 receptor and transporter binding in leptin-receptor-deficient Zucker rats and rats with diet-induced obesity. Neuroendocrinology 89(2):152–162. doi:10.1159/000170586

    Article  CAS  PubMed  Google Scholar 

  • Daws LC, Avison MJ, Robertson SD, Niswender KD, Galli A, Saunders C (2011) Insulin signaling and addiction. Neuropharmacology 61(7):1123–1128. doi:10.1016/j.neuropharm.2011.02.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deroche V, Piazza PV, Casolini P, Le Moal M, Simon H (1993) Sensitization to the psychomotor effects of amphetamine and morphine induced by food restriction depends on corticosterone secretion. Brain Res 611(2):352–356. doi:10.1016/0006-8993(93)90526-S

    Article  CAS  PubMed  Google Scholar 

  • Deshmukh R, Sharma PL (2012) Activation of central cannabinoid CB1 receptors by WIN 55, 212-2 induces hyperphagia and facilitates preferential increase in palatable diet consumption in Wistar rats. Int J Recent Adv Pharm Res 2:62–69. doi:10.1523/JNEUROSCI.1171-08.2008

    Google Scholar 

  • Di Marzo V, Goparaju SK, Wang L, Liu J, Bátkai S, Járai Z, Fezza F, Miura GI, Palmiter RD, Sugiura T, Kunos G (2001) Leptin-regulated endocannabinoids are involved in maintaining food intake. Nature 410(6830):822–825. doi:10.1038/35071088

    Article  CAS  PubMed  Google Scholar 

  • DiLeone RJ, Taylor JR, Picciotto MR (2012) The drive to eat: comparisons and distinctions between mechanisms of food reward and drug addiction. Nat Neurosci 15(10):1330–1335. doi:10.1038/nn.3202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edge PJ, Gold MS (2011) Drug withdrawal and hyperphagia: lessons from tobacco and other drugs. Curr Pharm Des 17(12):1173–1179

    Article  CAS  PubMed  Google Scholar 

  • Esch T, Stefano GB (2004) The neurobiology of pleasure, reward processes, addiction and their health implications. Neuroendocrinol Lett 25(4):235–251

    CAS  PubMed  Google Scholar 

  • Figlewicz DP, Sipols AJ (2010) Energy regulatory signals and food reward. Pharmacol Biochem Behav 97(1):15–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Figlewicz DP, Naleid AM, Sipols AJ (2007) Modulation of food reward by adiposity signals. Physiol Behav 91:473–478. doi:10.1016/j.physbeh.2006.10.008

    Article  CAS  PubMed  Google Scholar 

  • Fordahl SC, Locke JL, Jones SR (2016) High fat diet augments amphetamine sensitization in mice: role of feeding pattern, obesity, and dopamine terminal changes. Neuropharmacology 109:170. doi:10.1016/j.neuropharm.2016.06.006

    Article  CAS  PubMed  Google Scholar 

  • Gambarana C, Masi F, Leggio B, Grappi S, Nanni G, Scheggi S, De Montis MG, Tagliamonte A (2003) Acquisition of a palatable-food-sustained appetitive behavior in satiated rats is dependent on the dopaminergic response to this food in limbic areas. Neuroscience 121:179–187. doi:10.1016/S0306-4522(03)00383-X

    Article  CAS  PubMed  Google Scholar 

  • Geiger BM, Frank LE, Caldera-siu AD, Stiles L, Pothos EN (2007) Deficiency of central dopamine in multiple obesity models. Appetite 49(1):293. doi:10.1016/j.appet.2007.03.075

    Article  Google Scholar 

  • Geiger BM, Haburcak M, Avena NM, Moyer MC, Hoebel BG, Pothos EN (2009) Deficits of mesolimbic dopamine neurotransmission in rat dietary obesity. Neuroscience 159(4):1193–1199. doi:10.1016/j.neuroscience.2009.02.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gosnell BA (2005) Sucrose intake enhances behavioral sensitization produced by cocaine. Brain Res 1031(2):194–201. doi:10.1016/j.brainres.2004.10.037

    Article  CAS  PubMed  Google Scholar 

  • Herpertz-Dahlmann B (2015) Adolescent eating disorders: update on definitions, symptomatology, epidemiology, and comorbidity. Child Adolesc Psychiatr Clin N Am 24(1):177–196. doi:10.1016/j.chc.2008.07.005

    Article  PubMed  Google Scholar 

  • Higuchi S, Ohji M, Araki M, Furuta R, Katsuki M, Yamaguchi R, Akitake Y, Matsuyama K, Irie K, Mishima K (2011) Increment of hypothalamic 2-arachidonoylglycerol induces the preference for a high-fat diet via activation of cannabinoid 1 receptors. Behav Brain Res 216(1):477–480. doi:10.1016/j.bbr.2010.08.042

    Article  CAS  PubMed  Google Scholar 

  • Higuchi S, Irie K, Yamaguchi R, Katsuki M, Araki M, Ohji M et al (2012) Hypothalamic 2-arachidonoylglycerol regulates multistage process of high-fat diet preferences. PLoS One 7. doi:10.1371/journal.pone.0038609

  • Hommel JD, Trinko R, Sears RM, Georgescu D, Liu ZW, Gao XB, DiLeone RJ (2006) Leptin receptor signaling in midbrain dopamine neurons regulates feeding. Neuron 51(6):801–810

    Article  CAS  PubMed  Google Scholar 

  • Huang XF, Zavitsanou K, Huang X, Yu Y, Wang H, Chen F, Lawrence AJ, Deng C (2006) Dopamine transporter and D2 receptor binding densities in mice prone or resistant to chronic high fat diet-induced obesity. Behav Brain Res 175:415–419. doi:10.1016/j.bbr.2006.08.034

    Article  CAS  PubMed  Google Scholar 

  • Johnson PM, Kenny PJ (2010) Dopamine D2 receptors in addictionlike reward dysfunction and compulsive eating in obese rats. Nat Neurosci 13(5):635–641. doi:10.1038/nn.2519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawahara Y, Kawahara H, Kaneko F, Yamada M, Nishi Y, Tanaka E, Nishi A (2009) Peripherally administered ghrelin induces bimodal effects on the mesolimbic dopamine system depending on food-consumptive states. Neuroscience 161(3):855–864

    Article  CAS  PubMed  Google Scholar 

  • Kawahara Y, Kaneko F, Yamada M, Kishikawa Y, Kawahara H, Nishi A (2013) Food reward-sensitive interaction of ghrelin and opioid receptor pathways in mesolimbic dopamine system. Neuropharmacology 67:395–402

    Article  CAS  PubMed  Google Scholar 

  • Kearns DN, Weiss SJ (2007) Contextual renewal of cocaine seeking in rats and its attenuation by the conditioned effects of an alternative reinforcer. Drug Alcohol Depend 90(2):193–202. doi:10.1016/j.drugalcdep.2007.03.006

    Article  CAS  PubMed  Google Scholar 

  • Kelley AE, Schiltz CA, Landry CF (2005) Neural systems recruited by drug-and food-related cues: studies of gene activation in corticolimbic regions. Physiol Behav 86(1):11–14. doi:10.1016/j.physbeh.2005.06.018

    Article  CAS  PubMed  Google Scholar 

  • King SJ, Isaacs AM, O'farrell E, Abizaid A (2011) Motivation to obtain preferred foods is enhanced by ghrelin in the ventral tegmental area. Horm Behav 60(5):572–580

    Article  CAS  PubMed  Google Scholar 

  • Krügel U, Schraft T, Kittner H, Kiess W, Illes P (2003) Basal and feeding-evoked dopamine release in the rat nucleus accumbens is depressed by leptin. Eur J Pharmacol 482(1):185–187

    Article  PubMed  CAS  Google Scholar 

  • Kurose Y, Iqbal J, Rao A, Murata Y, Hasegawa Y, Terashima Y, Clarke IJ (2005) Changes in expression of the genes for the leptin receptor and the growth hormone-releasing peptide/ghrelin receptor in the hypothalamic arcuate nucleus with long-term manipulation of adiposity by dietary means. J Neuroendocrinol 17(6):331–340

    Article  CAS  PubMed  Google Scholar 

  • Leshan RL, Opland DM, Louis GW, Leinninger GM, Patterson CM, Rhodes CJ, Myers MG (2010) Ventral tegmental area leptin receptor neurons specifically project to and regulate cocaine-and amphetamine-regulated transcript neurons of the extended central amygdala. J Neurosci 30(16):5713–5723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin S, Thomas TC, Storlien LH, Huang XF (2000) Development of high fat diet-induced obesity and leptin resistance in C57Bl/6J mice. Int J Obes 24(5):639–646. doi:10.1038/sj.ijo.0801209

    Article  CAS  Google Scholar 

  • Lindqvist A, de la Cour CD, Stegmark A, Håkanson R, Erlanson-Albertsson C (2005) Overeating of palatable food is associated with blunted leptin and ghrelin responses. Regul Pept 130(3):123–132

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Lockie SH, Dinan T, Lawrence AJ, Spencer SJ, Andrews ZB (2015) Diet-induced obesity causes ghrelin resistance in reward processing tasks. Psychoneuroendocrinology 62:114–120. doi:10.1016/j.psyneuen.2015.08.004

    Article  CAS  PubMed  Google Scholar 

  • de Macedo IC, de Freitas JS, da Silva Torres IL (2016) The influence of palatable diets in reward system activation: a mini review. Adv Pharmacol Sci 2016. doi:10.1155/2016/7238679

  • Maldonado C, Rodríguez-Arias M, Castillo A, Aguilar MA, Minarro J (2006) Gamma-hydroxybutyric acid affects the acquisition and reinstatement of cocaine-induced conditioned place preference in mice. Behav Pharmacol 17:119–131. doi:10.1097/01.fbp.0000190685.84984.ec

    Article  CAS  PubMed  Google Scholar 

  • Martire SI, Maniam J, South T, Holmes N, Westbrook RF, Morris MJ (2014) Extended exposure to a palatable cafeteria diet alters gene expression in brain regions implicated in reward, and withdrawal from this diet alters gene expression in brain regions associated with stress. Behav Brain Res 265:132–141. doi:10.1016/j.bbr.2014.02.027

    Article  CAS  PubMed  Google Scholar 

  • Massa F, Mancini G, Schmidt H, Steindel F, Mackie K, Angioni C et al (2010) Alterations in the hippocampal endocannabinoid system in diet-induced obese mice. J Neurosci 30:6273–6281. doi:10.1523/JNEUROSCI.2648-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mather AA, Cox BJ, Enns MW, Sareen J (2009) Associations of obesity with psychiatric disorders and suicidal behaviors in a nationally representative sample. J Psychosom Res 66(4):277–285. doi:10.1016/j.jpsychores.2008.09.008

    Article  PubMed  Google Scholar 

  • Mellis T, Succu S, Sanna F, Boi A, Argiolas A, Melis MR (2007) The cannabinoid antagonist SR 141716A (Rimonabant) reduces the increase of extra-cellular dopamine release in the rat nucleus accumbens induced by a novel high palatable food. Neurosci Lett 419:231–235. doi:10.1016/j.neulet.2007.04.012

    Article  CAS  Google Scholar 

  • Morales L, Del Olmo N, Valladolid-Acebes I, Fole A, Cano V, Merino B, Stucchi P, Ruggieri D, López L, Alguacil LF, Ruiz-Gayo M (2012) Shift of circadian feeding pattern by high-fat diets is coincident with reward deficits in obese mice. PLoS One 7(5). doi:10.1371/journal.pone.0036139

  • Munzberg H, Bjornholm M, Bates SH, Myers MG Jr (2005) Leptin receptor action and mechanisms of leptin resistance. Cell Mol Life Sci 62:642–652

    Article  CAS  PubMed  Google Scholar 

  • Naleid AM, Grace MK, Cummings DE, Levine AS (2005) Ghrelin induces feeding in the mesolimbic reward pathway between the ventral tegmental area and the nucleus accumbens. Peptides 26(11):2274–2279

    Article  CAS  PubMed  Google Scholar 

  • Narayanaswami V, Thompson AC, Cassis LA, Bardo MT, Dwoskin LP (2013) Diet-induced obesity: dopamine transporter function, impulsivity and motivation. Int J Obes 37(8):1095–1103. doi:10.1038/ijo.2012.178

    Article  CAS  Google Scholar 

  • Ong ZY, Wanasuria AF, Lin MZ, Hiscock J, Muhlhausler BS (2013) Chronic intake of a cafeteria diet and subsequent abstinence. Sex-specific effects on gene expression in the mesolimbic reward system Appetite 65:189–199. doi:10.1016/j.appet.2013.01.014

    PubMed  Google Scholar 

  • Orsini CA, Ginton G, Shimp KG, Avena NM, Gold MS, Setlow B (2014) Food consumption and weight gain after cessation of chronic amphetamine administration. Appetite 78:76–80. doi:10.1016/j.appet.2014.03.013

    Article  PubMed  PubMed Central  Google Scholar 

  • Palkovits M (1983) Punch sampling biopsy technique. Methods Enzymol 103:368–376. doi:10.1016/S0076-6879(83)03025-6

    Article  CAS  PubMed  Google Scholar 

  • Parylak SL, Cottone P, Sabino V, Rice KC, Zorrilla EP (2012) Effects of CB1 and CRF1 receptor antagonists on binge-like eating in rats with limited access to a sweet fat diet: lack of withdrawal-like responses. Physiol Behav 107(2):231–242. doi:10.1016/j.physbeh.2012.06.017

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Franklin, KBJ (2001). The mouse brain in stereotaxic coordinates. edn. Academic Press. Harcourt Science and Technology Company: New York.

  • Pellow S, File SE (1986) Anxiolytic and anxiogenic drug effects on exploratory activity in an elevated plus-maze: a novel test of anxiety in the rat. Pharmacol Biochem Behav 24(3):525–529. doi:10.1016/0091-3057(86)90552-6

    Article  CAS  PubMed  Google Scholar 

  • Pitman KA, Borgland SL (2015) Changes in mu-opioid receptor expression and function in the mesolimbic system after long-term access to a palatable diet. Pharmacol Ther 154:110–119. doi:10.1016/j.pharmthera.2015.07.005

    Article  CAS  PubMed  Google Scholar 

  • Pontieri FE, Tanda G, Di Chiara G (1995) Intravenous cocaine, morphine, and amphetamine preferentially increase extracellular dopamine in the “shell” as compared with the “core” of the rat nucleus accumbens. Proc Natl Acad Sci 92:12304–12308. doi:10.1073/pnas.92.26.12304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rada P, Avena NM, Hoebel BG (2005) Daily bingeing on sugar repeatedly releases dopamine in the accumbens shell. Neuroscience 134(3):737–744. doi:10.1016/j.neuroscience.2005.04.043

    Article  CAS  PubMed  Google Scholar 

  • Rada P, Bocarsly ME, Barson JR, Hoebel BG, Leibowitz SF (2010) Reduced accumbens dopamine in sprague-dawley rats prone to overeating a fat-rich diet. Physiol Behav 101:394–400. doi:10.1016/j.physbeh.2010.07.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribeiro Do Couto B, Aguilar MA, Lluch J, Rodríguez-Arias M, Miñarro J (2009) Social experiences affect reinstatement of cocaine-induced place preference in mice. Psychopharmacology 207(3):485–498. doi:10.1007/s00213-009-1678-1

    Article  CAS  PubMed  Google Scholar 

  • Rodgers RJ, Cao BJ, Dalvi A, Holmes A (1997) Animal models of anxiety: an ethological perspective. Braz J Med Biol Res 30:289–304. doi:10.1590/S0100-879X1997000300002

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez‐Arias M, Navarrete F, Blanco‐Gandia MC, Arenas MC, Bartoll‐Andrés A, Aguilar MA, Miñarro J, Manzanares J (2016) Social defeat in adolescent mice increases vulnerability to alcohol consumption. Addict Biol 21(1):87–97

  • Rogers PJ, Smit HJ (2000) Food craving and food “addiction”: a critical review of the evidence from a biopsychosocial perspective. Pharmacol Biochem Behav 66(1):3–14. doi:10.1016/S0091-3057(00)00197-0

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto K, Matsumura S, Okafuji Y, Eguchi A, Yoneda T, Mizushige T, Tsuzuki S, Inoue K, Fushiki T (2015) The opioid system contributes to the acquisition of reinforcement for dietary fat but is not required for its maintenance. Physiol Behav 138:227–235. doi:10.1016/j.physbeh.2014.11.001

    Article  CAS  PubMed  Google Scholar 

  • Salamone JD, Correa M, Mingote SM, Weber SM (2005) Beyond the reward hypothesis: alternative functions of nucleus accumbens dopamine. Curr Opin Pharmacol 5:34–41. doi:10.1016/j.coph.2004.09.004

    Article  CAS  PubMed  Google Scholar 

  • Schellekens H, Dinan TG, Cryan JF (2013) Ghrelin at the interface of obesity and reward. Vitam Horm 91:285–323

    Article  CAS  PubMed  Google Scholar 

  • Serafine KM, Bentley TA, Koek W, France CP (2015) Eating high fat chow, but not drinking sucrose or saccharin, enhances the development of sensitization to the locomotor effects of cocaine in adolescent female rats. Behav Pharmacol 26(3):321–325. doi:10.1097/FBP.0000000000000114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma S, Fernandes MF, Fulton S (2013) Adaptations in brain reward circuitry underlie palatable food cravings and anxiety induced by high-fat diet withdrawal. Int J Obes 37(9):1183–1191. doi:10.1038/ijo.2012.197

    Article  CAS  Google Scholar 

  • Simon GE, Von Korff M, Saunders K, Miglioretti DL, Crane PK, van Belle G, Kesller RC (2006) Association between obesity and psychiatric disorders in the US adult population. Arch Gen Psychiatry 63:824–830. doi:10.1001/archpsyc.63.7.824

    Article  PubMed  PubMed Central  Google Scholar 

  • Skibicka KP, Hansson C, Alvarez-Crespo M, Friberg PA, Dickson SL (2011a) Ghrelin directly targets the ventral tegmental area to increase food motivation. Neuroscience 180:129–137

    Article  CAS  PubMed  Google Scholar 

  • Skibicka KP, Shirazi RH, Hansson C, Dickson SL (2011b) Ghrelin interacts with neuropeptide Y Y1 and opioid receptors to increase food reward. Endocrinology 153(3):1194–1205

    Article  PubMed  CAS  Google Scholar 

  • Smith SL, Harrold JA, Williams G (2002) Diet-induced obesity increases μ opioid receptor binding in specific regions of the rat brain. Brain Res 953(1):215–222. doi:10.1016/S0006-8993(02)03291-2

    Article  CAS  PubMed  Google Scholar 

  • South T, Huang XF (2008) High-fat diet exposure increases dopamine D2 receptor and decreases dopamine transporter receptor binding density in the nucleus accumbens and caudate putamen of mice. Neurochem Res 33:598–605. doi:10.1007/s11064-007-9483-x

    Article  CAS  PubMed  Google Scholar 

  • Spear LP (2000) Neurobehavioral changes in adolescence. Curr Dir Psychol Sci 9(4):111–114. doi:10.1111/1467-8721.00072

    Article  Google Scholar 

  • Speed N, Saunders C, Davis AR, Owens WA, Matthies HJG, Saadat S, Kennedy JP, Vaughan RA, Neve RL, Lindsley CW, Russo SJ, Daws LC, Niswender KD, Galli A (2011) Impaired striatal Akt signaling disrupts dopamine homeostasis and increases feeding. PLoS Biol 6(9):e25169. doi:10.1371/journal.pone.0025169

    CAS  Google Scholar 

  • Stamp JA, Mashoodh R, van Kampen JM, Robertson HA (2008) Food restriction enhances peak corticosterone levels, cocaine-induced locomotor activity, and ΔFosB expression in the nucleus accumbens of the rat. Brain Res 1204:94–101. doi:10.1016/j.brainres.2008.02.019

    Article  CAS  PubMed  Google Scholar 

  • Swanson SA, Crow SJ, Le Grange D, Swendsen J, Merikangas KR (2011) Prevalence and correlates of eating disorders in adolescents: results from the national comorbidity survey replication adolescent supplement. Arch Gen Psychiatry 68(7):714–723. doi:10.1001/archgenpsychiatry.2011.22

    Article  PubMed  Google Scholar 

  • Tanda G, Di Chiara G (1998) A dopamine-μ1 opioid link in the rat ventral tegmentum shared by palatable food (Fonzies) and non-psychostimulant drugs of abuse. Eur J Neurosci 10(3):1179–1187

    Article  CAS  PubMed  Google Scholar 

  • Teegarden SL, Bale TL (2007) Decreases in dietary preference produce increased emotionality and risk for dietary relapse. Biol Psychiatry 61:1021–1029. doi:10.1016/j.biopsych.2006.09.032

    Article  PubMed  Google Scholar 

  • Thanos PK, Michaelides M, Piyis YK, Wang GJ, Volkow ND (2008) Food restriction markedly increases dopamine D2 receptor (D2R) in a rat model of obesity as assessed with in-vivo muPET imaging ([11C] raclopride) and in-vitro ([3H] spiperone) autoradiography. Synapse 62(1):50–61

    Article  CAS  PubMed  Google Scholar 

  • Thanos PK, Kim R, Cho J, Michaelides M, Anderson BJ, Primeaux SD, Bray GA, Wang GJ, Robinson JK, Volkow ND (2010) Obesity-resistant S5B rats showed greater cocaine conditioned place preference than the obesity-prone OM rats. Physiol Behav 101(5):713–718. doi:10.1016/j.physbeh.2010.08.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tups A, Helwig M, Khorooshi RMH, Archer ZA, Klingenspor M, Mercer JG (2004) Circulating ghrelin levels and central ghrelin receptor expression are elevated in response to food deprivation in a seasonal mammal (Phodopus sungorus). J Neuroendocrinol 16(11):922–928

    Article  CAS  PubMed  Google Scholar 

  • VanBuskirk KA, Potenza MN (2010). The treatment of obesity and its co-occurrence with substance use disorders. Journal of addiction medicine,4(1), 1. doi: 10.1097/ADM.0b013e3181ce38e7

  • Vidal-Infer A, Arenas MC, Daza-Losada M, Aguilar MA, Miñarro J, Rodríguez-Arias M (2012) High novelty-seeking predicts greater sensitivity to the conditioned rewarding effects of cocaine. Pharmacol Biochem Behav 102:124–132. doi:10.1016/j.pbb.2012.03.031

    Article  CAS  PubMed  Google Scholar 

  • Volkow ND, Wang GJ, Tomasi D, Baler RD (2013) Obesity and addiction: neurobiological overlaps. Obes Rev 14(1):2–18. doi:10.1111/j.1467-789X.2012.01031.x

    Article  CAS  PubMed  Google Scholar 

  • Wang GJ, Volkow ND, Logan J, Pappas NR, Wong CT, Zhu W, Netusil N, Fowler JS (2001) Brain dopamine and obesity. Lancet 357:354–357. doi:10.1016/S0140-6736(00)03643-6

    Article  CAS  PubMed  Google Scholar 

  • Warren M, Frost-Pineda K, Gold M (2005) Body mass index and marijuana use. J Addict Dis 24:95–100. doi:10.1300/J069v24n03_08

    Article  PubMed  Google Scholar 

  • Wellman M, Abizaid A (2015) Knockdown of central ghrelin O-acyltransferase by vivo-morpholino reduces body mass of rats fed a high-fat diet. Peptides 70:17–22. doi:10.1016/j.peptides.2015.05.007

    Article  CAS  PubMed  Google Scholar 

  • Wellman PJ, Davis KW, Nation JR (2005) Augmentation of cocaine hyperactivity in rats by systemic ghrelin. Regul Pept 125(1):151–154

    Article  CAS  PubMed  Google Scholar 

  • Wellman PJ, Nation JR, Davis KW (2007) Impairment of acquisition of cocaine self-administration in rats maintained on a high-fat diet. Pharmacol Biochem Behav 88(1):89–93. doi:10.1016/j.pbb.2007.07.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wellman PJ, Clifford PS, Rodriguez JA (2013) Ghrelin and ghrelin receptor modulation of psychostimulant action. Front Neurosci 7:171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • York DA, Teng L, Park-York M (2010) Effects of dietary fat and enterostatin on dopamine and 5-hydroxytrytamine release from rat striatal slices. Brain Res 1349:48–55. doi:10.1016/j.brainres.2010.06.036

    Article  CAS  PubMed  Google Scholar 

  • You ZB, Wang B, Liu QR, Wu Y, Otvos L, Wise RA (2016). Reciprocal inhibitory interactions between the reward-related effects of leptin and cocaine. Neuropsychopharmacology doi: 10.1038/npp.2015.230

  • Zhang S, Zhang Q, Zhang L, Li C, Jiang H (2013) Expression of ghrelin and leptin during the development of type 2 diabetes mellitus in a rat model. Mol Med Rep 7(1):223–228

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Spanish Ministry of Economy and Innovation and FEDER (PSI2014-51847-R and PSI2011-24762), Spanish Ministry of Health, Social Affairs and Equality (PNSD 2014-007); Instituto de Salud Carlos III, Red de Trastornos Adictivos (RTA) (RD12/0028/0005, RD12/0028/0019, RD16/0017/0007) and Unión Europea, Fondos FEDER “una manera de hacer Europa.” Generalitat Valenciana, PROMETEOII/2014/063. We wish to thank Brian Normanly for his English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Rodríguez-Arias.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blanco-Gandía, M.C., Aracil-Fernández, A., Montagud-Romero, S. et al. Changes in gene expression and sensitivity of cocaine reward produced by a continuous fat diet. Psychopharmacology 234, 2337–2352 (2017). https://doi.org/10.1007/s00213-017-4630-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-017-4630-9

Keywords

Navigation