Skip to main content

Advertisement

Log in

Altered sucrose self-administration following injection of melanocortin receptor agonists and antagonists into the ventral tegmental area

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale and objectives

Alpha-melanocyte stimulating hormone (αMSH) and agouti-related protein (AgRP) are antagonistic neuropeptides that play an important role in the control of feeding and body weight through their central actions on the melanocortin-3 and melanocortin-4 receptors. Increasing evidence indicates that αMSH and AgRP can interact with the mesolimbic dopamine system to regulate feeding as well as other behaviors. For example, we have shown previously that injection of melanocortin receptor agonists and antagonists into the ventral tegmental area (VTA) alters both normal home-cage feeding and the intake of sucrose solutions, but it remains unknown whether αMSH and AgRP can also act in the VTA to affect reward-related feeding.

Methods

We tested whether injection of the melanocortin receptor agonist, MTII, or the melanocortin receptor antagonist, SHU9119, directly into the VTA affected operant responding maintained by sucrose pellets in self-administration assays.

Results

Injection of MTII into the VTA decreased operant responding maintained by sucrose pellets on both fixed ratio and progressive ratio schedules of reinforcement, whereas SHU9119 increased operant responding under fixed ratio, but not progressive ratio schedules. MTII also increased and SHU9119 decreased 24-h home-cage food intake.

Conclusions

This study demonstrates that αMSH and AgRP act in the VTA to affect sucrose self-administration. Thus, it adds critical information to the growing literature showing that in addition to their well-characterized role in controlling “need-based” feeding, αMSH and AgRP can also act on the mesolimbic dopamine system to control reward-related behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bass CE, Grinevich VP, Gioia D, Day-Brown JD, Bonin KD, Stuber GD, Weiner JL, Budygin EA (2013) Optogenetic stimulation of VTA dopamine neurons reveals that tonic but not phasic patterns of dopamine transmission reduce ethanol self-administration. Front Behav Neurosci 7:173

    Article  PubMed  PubMed Central  Google Scholar 

  • Cone RD (2005) Anatomy and regulation of the central melanocortin system. Nat Neurosci 8:571–578

    Article  CAS  PubMed  Google Scholar 

  • Dietrich MO, Bober J, Ferreira JG, Tellez LA, Mineur YS, Souza DO, Gao XB, Picciotto MR, Araujo I, Liu ZW, Horvath TL (2012) AgRP neurons regulate development of dopamine neuronal plasticity and nonfood-associated behaviors. Nat Neurosci 15:1108–1110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farooqi S, O’Rahilly S (2006) Genetics of obesity in humans. Endocr Rev 27:710–718

    Article  CAS  PubMed  Google Scholar 

  • Grieco P, Balse PM, Weinberg D, MacNeil T, Hruby VJ (2000) D-Amino acid scan of gamma-melanocyte-stimulating hormone: importance of Trp(8) on human MC3 receptor selectivity. J Med Chem 43:4998–5002

    Article  CAS  PubMed  Google Scholar 

  • Grill HJ, Ginsberg AB, Seeley RJ, Kaplan JM (1998) Brainstem application of melanocortin receptor ligands produces long-lasting effects on feeding and body weight. J Neurosci 18:10128–10135

    CAS  PubMed  Google Scholar 

  • Jansone B, Bergstrom L, Svirskis S, Lindblom J, Klusa V, Wikberg JE (2004) Opposite effects of gamma(1)- and gamma(2)-melanocyte stimulating hormone on regulation of the dopaminergic mesolimbic system in rats. Neurosci Lett 361:68–71

    Article  CAS  PubMed  Google Scholar 

  • Kenny PJ (2011) Reward mechanisms in obesity: new insights and future directions. Neuron 69:664–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • King CM, Hentges ST (2011) Relative number and distribution of murine hypothalamic proopiomelanocortin neurons innervating distinct target sites. PLoS One 6:e25864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kishi T, Aschkenasi CJ, Lee CE, Mountjoy KG, Saper CB, Elmquist JK (2003) Expression of melanocortin 4 receptor mRNA in the central nervous system of the rat. J Comp Neurol 457:213–235

    Article  CAS  PubMed  Google Scholar 

  • Krashes MJ, Shah BP, Koda S, Lowell BB (2013) Rapid versus delayed stimulation of feeding by the endogenously released AgRP neuron mediators GABA, NPY, and AgRP. Cell Metab 18:588–595

    Article  CAS  PubMed  Google Scholar 

  • Lee YS, Poh LK, Loke KY (2002) A novel melanocortin 3 receptor gene (MC3R) mutation associated with severe obesity. J Clin Endocrinol Metab 87:1423–1426

    Article  CAS  PubMed  Google Scholar 

  • Lee YS, Poh LK, Kek BL, Loke KY (2007) The role of melanocortin 3 receptor gene in childhood obesity. Diabetes 56:2622–2630

    Article  CAS  PubMed  Google Scholar 

  • Li YQ, Shrestha Y, Pandey M, Chen M, Kablan A, Gavrilova O, Offermanns S, Weinstein LS (2016) Gq/11alpha and Gsalpha mediate distinct physiological responses to central melanocortins. J Clin Invest 126:40–49

    Article  PubMed  Google Scholar 

  • Lindblom J, Opmane B, Mutulis F, Mutule I, Petrovska R, Klusa V, Bergstrom L, Wikberg JE (2001) The MC4 receptor mediates alpha-MSH induced release of nucleus accumbens dopamine. Neuroreport 12:2155–2158

    Article  CAS  PubMed  Google Scholar 

  • Lippert RN, Ellacott KL, Cone RD (2014) Gender-specific roles for the melanocortin-3 receptor in the regulation of the mesolimbic dopamine system in mice. Endocrinology 155:1718–1727

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu H, Kishi T, Roseberry AG, Cai X, Lee CE, Montez JM, Friedman JM, Elmquist JK (2003) Transgenic mice expressing green fluorescent protein under the control of the melanocortin-4 receptor promoter. J Neurosci 23:7143–7154

    CAS  PubMed  Google Scholar 

  • Mandelblat-Cerf Y, Ramesh RN, Burgess CR, Patella P, Yang Z, Lowell BB, Andermann ML (2015) Arcuate hypothalamic AgRP and putative POMC neurons show opposite changes in spiking across multiple timescales. elife 4

  • Mikhailova MA, Bass CE, Grinevich VP, Chappell AM, Deal AL, Bonin KD, Weiner JL, Gainetdinov RR, Budygin EA (2016) Optogenetically-induced tonic dopamine release from VTA-nucleus accumbens projections inhibits reward consummatory behaviors. Neuroscience 333:54–64

    Article  CAS  PubMed  Google Scholar 

  • Obregon AM, Amador P, Valladares M, Weisstaub G, Burrows R, Santos JL (2010) Melanocortin-3 receptor gene variants: association with childhood obesity and eating behavior in Chilean families. Nutrition 26:760–765

    Article  CAS  PubMed  Google Scholar 

  • Ogden CL, Carroll MD, Fryar CD, Flegal KM (2015) Prevalence of obesity among adults and youth: United States, 2011–2014. NCHS Data Brief: 1–8.

  • Pandit R, van der Zwaal EM, Luijendijk MC, Brans MA, van Rozen AJ, Oude Ophuis RJ, Vanderschuren LJ, Adan RA, la Fleur SE (2015) Central melanocortins regulate the motivation for sucrose reward. PLoS One 10:e0121768

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandit R, Omrani A, Luijendijk MC, de Vrind VA, Van Rozen AJ, Ophuis RJ, Garner K, Kallo I, Ghanem A, Liposits Z, Conzelmann KK, Vanderschuren LJ, la Fleur SE, Adan RA (2016) Melanocortin 3 receptor signaling in midbrain dopamine neurons increases the motivation for food reward. Neuropsychopharmacology.

  • Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates, 4th edition

  • Qi J, Zhang S, Wang HL, Barker DJ, Miranda-Barrientos J, Morales M (2016) VTA glutamatergic inputs to nucleus accumbens drive aversion by acting on GABAergic interneurons. Nat Neurosci 19:725–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson NR, Roberts DC (1996) Progressive ratio schedules in drug self-administration studies in rats: a method to evaluate reinforcing efficacy. J Neurosci Methods 66:1–11

    Article  CAS  PubMed  Google Scholar 

  • Roseberry AG (2013) Altered feeding and body weight following melanocortin administration to the ventral tegmental area in adult rats. Psychopharmacology 226:25–34

    Article  CAS  PubMed  Google Scholar 

  • Roseberry AG, Stuhrman K, Dunigan AI (2015) Regulation of the mesocorticolimbic and mesostriatal dopamine systems by alpha-melanocyte stimulating hormone and agouti-related protein. Neurosci Biobehav Rev 56:15–25

    Article  CAS  PubMed  Google Scholar 

  • Roselli-Rehfuss L, Mountjoy KG, Robbins LS, Mortrud MT, Low MJ, Tatro JB, Entwistle ML, Simerly RB, Cone RD (1993) Identification of a receptor for gamma melanotropin and other proopiomelanocortin peptides in the hypothalamus and limbic system. Proc Natl Acad Sci U S A 90:8856–8860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez MS, Barontini M, Armando I, Celis ME (2001) Correlation of increased grooming behavior and motor activity with alterations in nigrostriatal and mesolimbic catecholamines after alpha-melanotropin and neuropeptide glutamine-isoleucine injection in the rat ventral tegmental area. Cell Mol Neurobiol 21:523–533

    Article  CAS  PubMed  Google Scholar 

  • Savastano DM, Tanofsky-Kraff M, Han JC, Ning C, Sorg RA, Roza CA, Wolkoff LE, Anandalingam K, Jefferson-George KS, Figueroa RE, Sanford EL, Brady S, Kozlosky M, Schoeller DA, Yanovski JA (2009) Energy intake and energy expenditure among children with polymorphisms of the melanocortin-3 receptor. Am J Clin Nutr 90:912–920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan KR, Yvon C, Turiault M, Mirzabekov JJ, Doehner J, Labouebe G, Deisseroth K, Tye KM, Luscher C (2012) GABA neurons of the VTA drive conditioned place aversion. Neuron 73:1173–1183

    Article  CAS  PubMed  Google Scholar 

  • Torre E, Celis ME (1986) Alpha-MSH injected into the substantia nigra or intraventricularly alters behavior and the striatal dopaminergic activity. Neurochem Int 9:85–89

    Article  CAS  PubMed  Google Scholar 

  • Torre E, Celis ME (1988) Cholinergic mediation in the ventral tegmental area of alpha-melanotropin induced excessive grooming: changes of the dopamine activity in the nucleus accumbens and caudate putamen. Life Sci 42:1651–1657

    Article  CAS  PubMed  Google Scholar 

  • Tracy AL, Clegg DJ, Johnson JD, Davidson TL, Benoit SC (2008) The melanocortin antagonist AgRP (83-132) increases appetitive responding for a fat, but not a carbohydrate, reinforcer. Pharmacol Biochem Behav 89:263–271

    Article  CAS  PubMed  Google Scholar 

  • Volkow ND, Wang GJ, Baler RD (2011) Reward, dopamine and the control of food intake: implications for obesity. Trends Cogn Sci 15:37–46

    Article  CAS  PubMed  Google Scholar 

  • Webber ES, Bonci A, Krashes MJ (2015) The elegance of energy balance: insight from circuit-level manipulations. Synapse 69:461–474

    Article  CAS  PubMed  Google Scholar 

  • Williams DL, Kaplan JM, Grill HJ (2000) The role of the dorsal vagal complex and the vagus nerve in feeding effects of melanocortin-3/4 receptor stimulation. Endocrinology 141:1332–1337

    Article  CAS  PubMed  Google Scholar 

  • Woods SC, Begg DP (2015) Food for thought: revisiting the complexity of food intake. Cell Metab 22:348–351

    Article  CAS  PubMed  Google Scholar 

  • Woods SC, Langhans W (2012) Inconsistencies in the assessment of food intake. Am J Physiol Endocrinol Metab 303:E1408–E1418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y (2011) Structure, function and regulation of the melanocortin receptors. Eur J Pharmacol 660:125–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang SC, Shieh KR (2005) Differential effects of melanin concentrating hormone on the central dopaminergic neurons induced by the cocaine- and amphetamine-regulated transcript peptide. J Neurochem 92:637–646

    Article  CAS  PubMed  Google Scholar 

  • Yen HH, Roseberry AG (2015) Decreased consumption of rewarding sucrose solutions after injection of melanocortins into the ventral tegmental area of rats. Psychopharmacology 232:285–294

    Article  CAS  PubMed  Google Scholar 

  • van Zessen R, Phillips JL, Budygin EA, Stuber GD (2012) Activation of VTA GABA neurons disrupts reward consumption. Neuron 73:1184–1194

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Funding for these studies was provided by the Department of Biology and the Brains and Behavior Program at Georgia State University. We would like to thank Melissa Lange, Rapheal Williams, and Bonnie Williams for help and advice with performing the self-administration studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron G. Roseberry.

Ethics declarations

All protocols and procedures were approved by the Institutional Animal Care and Use Committee at Georgia State University and conformed to the NIH Guide for the Care and Use of Laboratory Animals.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shanmugarajah, L., Dunigan, A.I., Frantz, K.J. et al. Altered sucrose self-administration following injection of melanocortin receptor agonists and antagonists into the ventral tegmental area. Psychopharmacology 234, 1683–1692 (2017). https://doi.org/10.1007/s00213-017-4570-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-017-4570-4

Keywords

Navigation