Skip to main content

Advertisement

Log in

N-acetylcysteine amide (AD4) reduces cocaine-induced reinstatement

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Chronic exposure to drugs of abuse changes glutamatergic transmission in human addicts and animal models. N-acetylcysteine (NAC) is a cysteine prodrug that indirectly activates cysteine-glutamate antiporters. In the extrasynaptic space, NAC restores basal glutamate levels during drug abstinence and normalizes increased glutamatergic tone in rats during reinstatement to drugs of abuse. In initial clinical trials, repeated NAC administration seems to be promising for reduced craving in cocaine addicts.

Objective

In this study, NAC-amide, called AD4 or NACA, was examined in intravenous cocaine self-administration and extinction/reinstatement procedures in rats. We investigated the behavioral effects of AD4 in the olfactory bulbectomized (OBX) rats, considered an animal model of depression. Finally, we tested rats injected with AD4 or NAC during 10-daily extinction training sessions to examine subsequent cocaine seeking.

Results

AD4 (25–75 mg kg−1) given acutely did not alter the rewarding effects of cocaine in OBX rats and sham-operated controls. However, at 6.25–50 mg kg−1, AD4 decreased dose-dependently cocaine seeking and relapse triggered by cocaine priming or drug-associated conditioned cues in both phenotypes. Furthermore, repeated treatment with AD4 (25 mg kg−1) or NAC (100 mg kg−1) during daily extinction trials reduced reinstatement of drug-seeking behavior in sham-operated controls. In the OBX rats only, AD4 effectively blocked cocaine-seeking behavior.

Conclusions

Our results demonstrate that AD4 is effective at blocking cocaine-seeking behavior, highlighting its potential clinical use toward cocaine use disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amen SL, Piacentine LB, Ahmad ME, Li SJ, Mantsch JR, Risinger RC, et al. (2011) Repeated N-acetyl cysteine reduces cocaine seeking in rodents and craving in cocaine-dependent humans. Neuropsychopharmacology 36:871–878

    Article  CAS  PubMed  Google Scholar 

  • Amer J, Atlas D, Fibach E (2008) N-acetylcysteine amide (AD4) attenuates oxidative stress in beta-thalassemia blood cells. Biochim Biophys Acta 1780:249–255

    Article  CAS  PubMed  Google Scholar 

  • Atlas D, Melamed E, Offen D (1999). Brain targeted low molecular weight hydrophobic antioxidant compounds. US Patent No. 5874468

  • Bachnoff N, Trus M, Atlas D (2011) Alleviation of oxidative stress by potent and selective thioredoxin-mimetic peptides. Free Radic Biol Med 50:1355–1367

    Article  CAS  PubMed  Google Scholar 

  • Bahat-Stroomza M, Gilgun-Sherki Y, Offen D, Panet H, Saada A, Krool-Galron N, et al. (2005) A novel thiol antioxidant that crosses the blood brain barrier protects dopaminergic neurons in experimental models of Parkinson’s disease. Eur J Neurosci 21:637–646

    Article  PubMed  Google Scholar 

  • Baker DA, Shen H, Kalivas PW (2002) Cystine/glutamate exchange serves as the source for extracellular glutamate: modifications by repeated cocaine administration. Amino Acids 23:161–162

    Article  CAS  PubMed  Google Scholar 

  • Baker DA, McFarland K, Lake RW, Shen H, Tang XC, Toda S, et al. (2003a) Neuroadaptations in cystine-glutamate exchange underlie cocaine relapse. Nat Neurosci 6:743–749

    Article  CAS  PubMed  Google Scholar 

  • Baker DA, McFarland K, Lake RW, Shen H, Toda S, Kalivas PW (2003b) N-acetyl cysteine-induced blockade of cocaine-induced reinstatement. Ann N Y Acad Sci 1003:349–351

    Article  PubMed  Google Scholar 

  • Bavarsad Shahripour R, Harrigan MR, Alexandrov AV (2014) N-acetylcysteine (NAC) in neurological disorders: mechanisms of action and therapeutic opportunities. Brain Behav 4:108–122

    Article  PubMed  PubMed Central  Google Scholar 

  • Bouton ME (2002) Context, ambiguity, and unlearning: sources of relapse after behavioral extinction. Biol Psychiatry 52:976–986

    Article  PubMed  Google Scholar 

  • Brebner K, Wong TP, Liu L, Liu Y, Campsall P, Gray S, et al. (2005) Nucleus accumbens long-term depression and the expression of behavioral sensitization. Science 310:1340–1343

    Article  CAS  PubMed  Google Scholar 

  • Conklin CA, Tiffany ST (2002) Applying extinction research and theory to cue-exposure addiction treatments. Addiction 97:155–167

    Article  PubMed  Google Scholar 

  • Curtis MJ, Bond RA, Spina D, Ahluwalia A, Alexander SP, Giembycz MA, et al. (2015) Experimental design and analysis and their reporting: new guidance for publication in BJP. Br J Pharmacol 172:3461–3471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deepmala D, Slattery J, Kumar N, Delhey L, Berk M, Dean O, et al. (2015) Clinical trials of N-acetylcysteine in psychiatry and neurology: a systematic review. Neurosci Biobehav Rev 55:294–321

    Article  CAS  PubMed  Google Scholar 

  • Ferreira FR, Biojone C, Joca SR, Guimaraes FS (2008) Antidepressant-like effects of N-acetyl-L-cysteine in rats. Behav Pharmacol 19:747–750

    Article  CAS  PubMed  Google Scholar 

  • Frankowska M, Jastrzębska J, Nowak E, Białko M, Przegaliński E, Filip M (2014) The effects of N-acetylcysteine on cocaine reward and seeking behaviors in a rat model of depression. Behav Brain Res 266:108–118

    Article  CAS  PubMed  Google Scholar 

  • Gipson CD, Kupchik YM, Shen H, Reissner KJ, Thomas CA, Kalivas PW (2013) Relapse induced by cues predicting cocaine depends on rapid, transient synaptic potentiation. Neuron 77:867–872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giustarini D, Milzani A, Dalle-Donne I, Tsikas D, Rossi R (2012) N-acetylcysteine ethyl ester (NACET): a novel lipophilic cell-permeable cysteine derivative with an unusual pharmacokinetic feature and remarkable antioxidant potential. Biochem Pharmacol 84:1522–1533

    Article  CAS  PubMed  Google Scholar 

  • Grinberg L, Fibach E, Amer J, Atlas D (2005) N-acetylcysteine amide, a novel cell-permeating thiol, restores cellular glutathione and protects human red blood cells from oxidative stress. Free Radic Biol Med 38:136–145

    Article  CAS  PubMed  Google Scholar 

  • Jastrzębska J, Frankowska M, Szumiec Ł, Sadakierska-Chudy A, Haduch A, Smaga I, et al. (2015) Cocaine self-administration in Wistar-Kyoto rats: a behavioral and biochemical analysis. Behav Brain Res 293:62–73

    Article  PubMed  Google Scholar 

  • Kalivas PW (2009) The glutamate homeostasis hypothesis of addiction. Nat Rev Neurosci 10:561–572

    Article  CAS  PubMed  Google Scholar 

  • Kau KS, Madayag A, Mantsch JR, Grier MD, Abdulhameed O, Baker DA, et al. (2008) Blunted cystine-glutamate antiporter function in the nucleus accumbens promotes cocaine-induced drug seeking. Neuroscience 155:530–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly JP, Wrynn AS, Leonard BE (1997) The olfactory bulbectomized rat as a model ofdepression: an update. Pharmacol Ther 74:299–316

    Article  CAS  PubMed  Google Scholar 

  • Knackstedt LA, Melendez RI, Kalivas PW (2010) Ceftriaxone restores glutamate homeostasis and prevents relapse to cocaine seeking. Biol Psychiatr 67:81–84

    Article  CAS  Google Scholar 

  • Lee KS, Kim SR, Park HS, Park SJ, Min KH, Lee KY, et al. (2007) A novel thiol compound, N-acetylcysteine amide, attenuates allergic airway disease by regulating activation of NF-kappaB and hypoxia-inducible factor-1alpha. Exp Mol Med 39:756–768

    Article  CAS  PubMed  Google Scholar 

  • Leonard BE, Tuite M (1981) Anatomical physiological, and behavioral aspects of olfactory bulbectomy in the rat. Int Rev Neurobiol 22:251–286

    Article  CAS  PubMed  Google Scholar 

  • Lominac KD, Sacramento AD, Szumlinski KK, Kippin TE (2012) Distinct neurochemical adaptations within the nucleus accumbens produced by a history of self-administered vs non-contingently administered intravenous methamphetamine. Neuropsychopharmacology 37:707–722

    Article  CAS  PubMed  Google Scholar 

  • Madayag A, Lobner D, Kau KS, Mantsch JR, Abdulhameed O, Hearing M, et al. (2007) Repeated N-acetylcysteine administration alters plasticity-dependent effects of cocaine. J Neurosci 51:13968–13976

    Article  Google Scholar 

  • Madhavan A, Argilli E, Bonci A, Whistler JL (2013) Loss of D2 dopamine receptor function modulates cocaine-induced glutamatergic synaptic potentiation in the ventral tegmental area. J Neurosci 33:12329–12336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McBean GJ, Flynn J (2001) Molecular mechanisms of cystine transport. Biochem Soc Trans 29:717–722

    Article  CAS  PubMed  Google Scholar 

  • McClure EA, Sonne SC, Winhusen T, Carroll KM, Ghitza UE, McRae-Clark AL, et al. (2014) Achieving cannabis cessation—evaluating N-acetylcysteine treatment (ACCENT): design and implementation of a multi-site, randomized controlled study in the National Institute on Drug Abuse clinical trials network. Contemp Clin Trials 39:211–223

    Article  PubMed  PubMed Central  Google Scholar 

  • McFarland K, Lapish CC, Kalivas PW (2003) Prefrontal glutamate release into the core of the nucleus accumbens mediates cocaine-induced reinstatement of drug-seeking behavior. J Neurosci 23:3531–3537

    CAS  PubMed  Google Scholar 

  • Miguens M, Del Olmo N, Higuera-Matas A, Torres I, García-Lecumberri C, Ambrosio E (2008) Glutamate and aspartate levels in the nucleus accumbens during cocaine self-administration and extinction: a time course microdialysis study. Psychopharmacology 196:303–313

    Article  CAS  PubMed  Google Scholar 

  • Moussawi K, Pacchioni A, Moran M, Olive MF, Gass JT, Lavin A, et al. (2009) N-acetylcysteine reverses cocaine-induced metaplasticity. Nat Neurosci 12:182–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moussawi K, Zhou W, Shen H, Reichel CM, See RE, Carr DB, et al. (2011) Reversing cocaine-induced synaptic potentiation provides enduring protection from relapse. Proc Natl Acad Sci U S A 108:385–390

    Article  CAS  PubMed  Google Scholar 

  • O’Brien CP (1997) A range of research-based pharmacotherapies for addiction. Science 278:66–70

    Article  PubMed  Google Scholar 

  • O’Brien C, Parker K (2006) Drug addiction and drug abuse. In: Brunton JLL (ed) Goodman and Gilman’s the pharmacological basis of therapeutics, 11th edn. McGraw-Hill, New York, pp. 607–627

    Google Scholar 

  • Offen D, Gilgun-Sherki Y, Barhum Y, Benhar M, Grinberg L, Reich R, et al. (2004) A low molecular weight copper chelator crosses the blood-brain barrier and attenuates experimental autoimmune encephalomyelitis. J Neurochem 89:1241–1251

    Article  CAS  PubMed  Google Scholar 

  • Pandya JD, Readnower RD, Patel SP, Yonutas HM, Pauly JR, Goldstein GA, et al. (2014) N-acetylcysteine amide confers neuroprotection, improves bioenergetics and behavioral outcome following TBI. Exp Neurol 257:106–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Penugonda S, Mare S, Goldstein G, Banks WA, Ercal N (2005) Effects of N-acetylcysteine amide (NACA), a novel thiol antioxidant against glutamate-induced cytotoxicity in neuronal cell line PC12. Brain Res 1056:132–138

    Article  CAS  PubMed  Google Scholar 

  • Pierce RC, Bell K, Duffy P, Kalivas PW (1996) Repeated cocaine augments excitatory amino acid transmission in the nucleus accumbens only in rats having developed behavioral sensitization. J Neurosci 16:1550–1560

    CAS  PubMed  Google Scholar 

  • Pomierny-Chamioło L, Rup K, Pomierny B, Niedzielska E, Kalivas PW, Filip M (2014) Metabotropic glutamatergic receptors and their ligands in drug addiction. Pharmacol Ther 142:281–305

    Article  PubMed  Google Scholar 

  • Quirk GJ, Mueller D (2008) Neural mechanisms of extinction learning and retrieval. Neuropsychopharmacology 33:56–72

    Article  PubMed  Google Scholar 

  • Reichel CM, Moussawi K, Do PH, Kalivas PW, See RE (2011) Chronic N-acetylcysteine during abstinence or extinction after cocaine self-administration produces enduring reductions in drug seeking. J Pharmacol Exp Ther 337:487–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sari Y, Smith KD, Ali PK, Rebec GV (2009) Upregulation of GLT1 attenuates cue-induced reinstatement of cocaine-seeking behavior in rats. J Neurosci 29:9239–9243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaham Y, Shalev U, Lu L, De Wit H, Stewart J (2003) The reinstatement model of drug relapse: history, methodology and major findings. Psychopharmacology 168:3–20

    Article  CAS  PubMed  Google Scholar 

  • Shen HW, Toda S, Moussawi K, Bouknight A, Zahm DS, Kalivas PW (2009) Altered dendritic spine plasticity in cocaine-withdrawn rats. J Neurosci 29:2876–2884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smaga I, Pomierny B, Krzyżanowska W, Pomierny-Chamioło L, Miszkiel J, Niedzielska E, et al. (2012) N-acetylcysteine possesses antidepressant-like activity through reduction of oxidative stress: behavioral and biochemical analyses in rats. Prog Neuro-Psychopharmacol Biol Psychiatry 39:280–287

    Article  CAS  Google Scholar 

  • Smaga I, Bystrowska B, Gawliński D, Pomierny B, Stankowicz P, Filip M (2014) Antidepressants and changes in concentration of endocannabinoids and N-acylethanolamines in rat brain structures. Neurotox Res 26:190–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wydra K, Golembiowska K, Zaniewska M, Kaminska K, Ferraro L, Fuxe K, et al. (2013) Accumbal and pallidal dopamine, glutamate and GABA overflow during cocaine self-administration and its extinction in rats. Addict Biol 18:307–324

    Article  CAS  PubMed  Google Scholar 

  • Yan M, Shen J, Person MD, Kuang X, Lynn WS, Atlas D, et al. (2008) Endoplasmic reticulum stress and unfolded protein response in Atm-deficient thymocytes and thymic lymphoma cells are attributable to oxidative stress. Neoplasia 10:160–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou W, Kalivas PW (2008) N-acetylcysteine reduces extinction responding and induces enduring reductions in cue- and heroin-induced drug-seeking. Biol Psychiatry 63:338–340

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the statutory funds of the Institute of Pharmacology Polish Academy of Sciences in Krakow (J.J., M.Fr., M.F..F.) and by the H. L. Lauterbach Foundation (D.A.).

Author contributions

J.J., M.Fr., and M.F. participated in research design, performed the experiments, and data analysis. J.J., M.Fr., M.F., and D.A. wrote or contributed to writing of the manuscript. All authors critically reviewed the content and approved the final version for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malgorzata Filip.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Joanna Jastrzębska and Malgorzata Frankowska contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jastrzębska, J., Frankowska, M., Filip, M. et al. N-acetylcysteine amide (AD4) reduces cocaine-induced reinstatement. Psychopharmacology 233, 3437–3448 (2016). https://doi.org/10.1007/s00213-016-4388-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-016-4388-5

Keywords

Navigation