Skip to main content
Log in

Caffeine, a common active adulterant of cocaine, enhances the reinforcing effect of cocaine and its motivational value

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Caffeine is one of the psychoactive substances most widely used as an adulterant in illicit drugs, such as cocaine. Animal studies have demonstrated that caffeine is able to potentiate several cocaine actions, although the enhancement of the cocaine reinforcing property by caffeine is less reported, and the results depend on the paradigms and experimental protocols used.

Objectives

We examined the ability of caffeine to enhance the motivational and rewarding properties of cocaine using an intravenous self-administration paradigm in rats. Additionally, the role of caffeine as a primer cue during extinction was evaluated.

Methods

In naïve rats, we assessed (1) the ability of the cocaine (0.250–0.125 mg/kg/infusion) and caffeine (0.125–0.0625 mg/kg/infusion) combination to maintain self-administration in fixed ratio (FR) and progressive ratio (PR) schedules of reinforcement compared with cocaine or caffeine alone and (2) the effect of caffeine (0.0625 mg/kg/infusion) in the maintenance of responding in the animals exposed to the combination of the drugs during cocaine extinction.

Results

Cocaine combined with caffeine and cocaine alone was self-administered on FR and PR schedules of reinforcement. Interestingly, the breaking point determined for the cocaine + caffeine group was significantly higher than the cocaine group. Moreover, caffeine, that by itself did not maintain self-administration behavior in naïve rats, maintained drug-seeking behavior of rats previously exposed to combinations of cocaine + caffeine.

Conclusions

Caffeine enhances the reinforcing effects of cocaine and its motivational value. Our results highlight the role of active adulterants commonly used in cocaine-based illicit street drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acquas E, Tanda G, Di Chiara G (2002) Differential effects of caffeine on dopamine and acetylcholine transmission in brain areas of drug-naive and caffeine-pretreated rats. Neuropsychopharmacol 27:182–193

    Article  CAS  Google Scholar 

  • Atkinson J, Enslen M (1976) Self-administration of caffeine by the rat. Arzneimittelforschung 26:2059–2061

    CAS  PubMed  Google Scholar 

  • Bachtell R, Self D (2009) Effects of adenosine A2A receptor stimulation on cocaine-seeking behavior in rats. Psychopharmacol 206:469–478

    Article  CAS  Google Scholar 

  • Baldo B, Koob G, Markou A (1999) Role of adenosine A2 receptor in brain stimulation reward under baseline conditions and during cocaine withdrawal in rats. J Neurosci 19:11017–11026

    CAS  PubMed  Google Scholar 

  • Bedingfield B, King D, Holloway F (1998) Cocaine and caffeine: conditioned place preference, locomotor activity, and additivity. Pharmacol Biochem Behav 61:291–296

    Article  CAS  PubMed  Google Scholar 

  • Camarasa J, Pubill D, Escubedo E (2006) Association of caffeine to MDMA does not increase antinociception but potentiates adverse effects of this recreational drug. Brain Res 1111:72–82

    Article  CAS  PubMed  Google Scholar 

  • Cauli O, Pinna A, Valentini V, Morelli M (2003) Subchronic caffeine exposure induces sensitization to caffeine and cross-sensitization to amphetamine ipsilateral turning behavior independent from dopamine relase. Neuropsychopharmacol 28:1752–1759

    Article  CAS  Google Scholar 

  • Celik E, Uzbay T, Karakas S (2006) Caffeine and amphetamine produce cross-sensitization to nicotine-induced locomotor activity in mice. Prog Neuropsychopharmacol Biol Psychiatry 30:50–55

    Article  CAS  PubMed  Google Scholar 

  • Cole C, Jones L, McVeigh J, Kicman A, Syed Q, Bellis M (2010) Cut: a guide to adulterants, bulking agents and other contaminants found in illicit drugs. Liverpool John Moores University, Centre for Public Health Engagement Liverpool

    Google Scholar 

  • Cole C, Jones L, McVeigh J, Kicman A, Syed Q, Bellis M (2011) Adulterants in illicit drugs: a review of empirical evidence. Drug Test Anal 3:89–96

    Article  CAS  PubMed  Google Scholar 

  • Daly J, Fredholm B (1998) Caffeine—an atypical drug of dependence. Drug Alcohol Depend 51:199–206

    Article  CAS  PubMed  Google Scholar 

  • De Luca M, Bassareo V, Bauer A, Di Chiara G (2007) Caffeine and accumbens shell dopamine. J Neurochem 103:157–163

    PubMed  Google Scholar 

  • Derlet R, Tseng J, Albertson T (1992) Potentiation of cocaine and d-amphetamine toxicity with caffeine. Am J Emerg Med 10:211–216

    Article  CAS  PubMed  Google Scholar 

  • Di Chiara G, Imperato A (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci USA 85:5274–5278

    Article  PubMed  PubMed Central  Google Scholar 

  • Doyle S, Breslin F, Rieger J, Beauglehole A, Lynch W (2012) Time and sex-dependent effects of an adenosine A2A/A1 receptor antagonist on motivation to self-administer cocaine in rats. Pharmacol Biochem Behav 102:257–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evrard I, Legleye S, Cadet-Taïrou A (2010) Composition, purity and perceived quality of street cocaine in France. Int J Drug Policy 21(5):399–406

    Article  PubMed  Google Scholar 

  • Ferré S (2008) An update on the mechanisms of the psychostimulant effects of caffeine. J Neurochem 105:1067–1079

    Article  PubMed  Google Scholar 

  • Ferré S (2016) Mechanisms of the psychostimulant effects of caffeine: implications for substance use disorders. Psychopharmacol (Berl). doi:10.1007/s00213-016-4212-2

    Google Scholar 

  • Ferré S, Fuxe K (1992) Dopamine denervation leads to an increase in the intramembrane interaction between adenosine A2 and dopamine D2 receptors I the neostriatum. Brain Res 594:124–130

    Article  PubMed  Google Scholar 

  • Filip M, Frankowska M, Zaniewska M, Przegaliński E, Muller CE, Agnati L et al (2006) Involvement of adenosine A2A and dopamine receptors in the locomotor and sensitizing effects of cocaine. Brain Res 1077:67–80

    Article  CAS  PubMed  Google Scholar 

  • Fisone G, Borgkvist A, Usiello A (2004) Caffeine as a psychomotor stimulant: mechanism of action. Cell Mol Life Sci 61:857–72

    Article  CAS  PubMed  Google Scholar 

  • Fredholm B, Bättig K, Holmén J, Nehlig A, Zvartau E (1999) Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev 51:83–133

    CAS  PubMed  Google Scholar 

  • Garrett B, Griffiths R (1997) The role of dopamine in the behavioral effects of caffeine in animals and humans. Pharmacol Biochem Behav 57:533–541

    Article  CAS  PubMed  Google Scholar 

  • Garrett B, Griffiths R (2001) Intravenous nicotine and caffeine: subjective and physiological effects in cocaine abusers. J Pharmacol Exp Ther 296:486–494

    CAS  PubMed  Google Scholar 

  • Gasior M, Jaszyna M, Peters J, Goldberg S (2000) Changes in the ambulatory activity and discriminative stimulus effects of psychostimulant drugs in rats chronically exposed to caffeine: effect of caffeine dose. J Pharmacol Exp Ther 295:1101–1111

    CAS  PubMed  Google Scholar 

  • Gasior M, Jaszyna M, Munzar P, Witkin J, Goldberg S (2002) Caffeine potentiates the discriminative stimulus effects of nicotine in rats. Psychopharmacol 162:385–395

    Article  CAS  Google Scholar 

  • Green T, Schenk S (2002) Dopaminergic mechanism for caffeine-produced cocaine seeking in rats. Neuropsychopharmacol 26:422–430

    Article  CAS  Google Scholar 

  • Griffiths RR, Woodson PP (1988) Reinforcing properties of caffeine: studies in humans and laboratory animals. Pharmacol Biochem Behav 29(2):419–27

    Article  CAS  PubMed  Google Scholar 

  • Hack S, Christie M (2003) Adaptations in adenosine signaling in drug dependence: therapeutic implications. Crit Rev Neurobiol 15:235–274

    Article  CAS  PubMed  Google Scholar 

  • Harland R, Gauvin D, Michaelis R, Carney J, Seale T, Holloway F (1989) Behavioral interaction between cocaine and caffeine: a drug discrimination analysis in rats. Pharmacol Biochem Behav 32:1017–1023

    Article  CAS  PubMed  Google Scholar 

  • Hobson B, Merritt K, Batchell R (2012) Stimulation of adenosine receptors in the nucleus accumbens reverses the expression of cocaine sensitization and cross-sensitization to dopamine D2 receptors in rats. Neuropharmacol 63:1172–1181

    Article  CAS  Google Scholar 

  • Hobson B, O’Neil C, Levis S, Monteggia L, Neve R, Self D, Batchell R (2013) Adenosine A1 and dopamine D1 receptor regulation of AMPA receptor phosphorylation and cocaine-seeking behavior. Neuropsychopharmacol 38:1974–1983

    Article  CAS  Google Scholar 

  • Hoffmeister F, Wuttke W (1973) Self-administration of acetylsalicylic acid and combinations with codeine and caffeine in rhesus monkeys. J Pharmacol Exp Ther 2:266–275

    Google Scholar 

  • Holloway F, Michaelis R, Huerta P (1985) Caffeine-phenylethylamine combinations mimic the amphetamine discriminative cue. Life Sci 36:723–730

    Article  CAS  PubMed  Google Scholar 

  • Horger B, Wellman P, Morien A, Davies B, Schenk S (1991) Caffeine exposure sensitizes rats to the reinforcement effects of cocaine. Neuroreport 53:53–56

    Article  Google Scholar 

  • Johnson T, Boussery K, Rowland-Yeo K, Tucker G, Rostami-Hodjegan A (2010) A semi-mechanistic model to predict the effects of liver cirrhosis on drug clearance. Clin Pharmacokinet 49:189–206

    Article  CAS  PubMed  Google Scholar 

  • Jones H, Griffiths R (2003) Oral caffeine maintenance potentiates the reinforcing and stimulant subjective effects of intravenous nicotine in cigarette smokers. Psychopharmacol 165:280–290

    CAS  Google Scholar 

  • Jones H, Lejuez C (2005) Personality correlates of caffeine dependence: the role of sensation seeking, impulsivity, and risk taking. Exp Clin Psychopharm 13:259–266

    Article  Google Scholar 

  • Justinova Z, Ferré S, Segal P, Antoniou K, Solinas M, Pappas L et al (2003) Involvement of adenosine A1 and A2A receptors in the adenosinergic modulation of the discriminative-stimulus effects of cocaine and methamphetamine in rats. J Pharmacol Exp Ther 307:977–986

    Article  CAS  PubMed  Google Scholar 

  • Justinova Z, Ferré S, Redhi G, Mascia P, Stroik J, Quarta D et al (2011) Reinforcing and neurochemical effects of cannabinoid CB1 receptor agonists, but not cocaine, are altered by adenosine A2A receptor antagonist. Addict Biol 16:405–415

    Article  CAS  PubMed  Google Scholar 

  • Kalivas P, Volkow N (2005) The neural basis of addiction: a pathology of motivation and choice. Am J Psychiatry 162:1403–1413

    Article  PubMed  Google Scholar 

  • Knapp C, Foye M, Cottam N, Ciraulo D, Korneysky C (2001) Adenosine agonists CGS 21680 and NECA inhibit the initiation of cocaine self-administration. Pharmacol Biochem Behav 68:797–803

    Article  CAS  PubMed  Google Scholar 

  • Koob G, Bloom F (1988) Cellular and molecular mechanisms of drug dependence. Science 242:715–723

    Article  CAS  PubMed  Google Scholar 

  • Kozlowski L, Henningfield J, Keenan R, Lei H, Leigh G, Jelinek L et al (1993) Patterns of alcohol, cigarette, and caffeine and other drug use in two drug abusing populations. J Subst Abuse Treat 10:171–179

    Article  CAS  PubMed  Google Scholar 

  • Kunin D, Gaskin S, Rogan F, Smith B, Amit Z (2000) Caffeine promotes ethanol drinking in rats: examination using a limited-access free choice paradigm. Alcohol 21:271–277

    Article  CAS  PubMed  Google Scholar 

  • Kuzmin A, Johansson B, Zvartau EE, Fredholm BB (1999) Caffeine, acting on adenosine A1 receptors, prevents the extinction of cocaine-seeking behavior in mice. J Pharmacol Exp Ther Aug 290(2):535–42

    CAS  Google Scholar 

  • Kuzmin A, Johansson B, Semenova S, Fredholm B (2000) Differences in the effect of chronic and acute caffeine on self-administration of cocaine in mice. Eur J of Neurosci 12:3026–3032

    Article  CAS  Google Scholar 

  • López-Hill X, Prieto J, Meikle M, Urbanavicius J, Abín-Carriquiry A, Prunell G, Umpiérrez E, Scorza C (2011) Coca-paste seized samples characterization: chamical analysis, stimulating effect in rats and relevance of caffeine as a major adulterant. Behav Brain Res 221:134–141

    Article  PubMed  Google Scholar 

  • Marczinski C (2014) Combined alcohol and energy drink use: hedonistic motives, adenosine, and alcohol dependence. Alcohol Clin Exp Res 38:1822–5

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin C, Cook C, Woodring J, Burkhardt G, Guenthner G, Omar H et al (2008) Caffeine use: association with nicotine use, aggression, and other psychopathology in psychiatric and pediatric outpatient adolescents. Scientific World Journal 8:512–516

    Article  PubMed  PubMed Central  Google Scholar 

  • McNamara R, Kerans A, O’Neill B, Harkin A (2006) Caffeine promotes hyperthermia and serotonergic loss following co-administration of the substituted amphetamines, MDMA (“Ecstasy”) and MDA (“Love”). Neuropharmacol 50:69–80

    Article  CAS  Google Scholar 

  • Misra A, Vadlamani N, Pontani R (1986) Effect of caffeine on cocaine locomotor stimulant activity in rats. Pharmacol Biochem Behav 24:761–764

    Article  CAS  PubMed  Google Scholar 

  • Myers K, Izbicki E (2006) Reinforcing and aversive effects of caffeine measured by flavor preference conditioning in caffeine-naive and caffeine-acclimated rats. Physiol Behav 88:585–596

    Article  CAS  PubMed  Google Scholar 

  • Nehlig A (1999) Are we dependent upon coffee and caffeine? A review on human and animal data. Neurosci Biobehav Rev 23:563–576

    Article  CAS  PubMed  Google Scholar 

  • Nehlig A, Boyet S (2000) Dose-response study of caffeine effects on cerebral functional activity with a specific focus on dependence. Brain Res 858:71–77

    Article  CAS  PubMed  Google Scholar 

  • O’Neill C, LeTendre M, Batchell R (2012) Adenosine A2A receptors in the nucleus accumbens bi-directionally alter cocaine seeking in rats. Neuropsychopharmacol 37:1245–1256

    Article  Google Scholar 

  • O’Neill C, Hobson B, Levis S, Batchell R (2014) persistent reduction of cocaine seeking by pharmacological manipulation of adenosine A1 and A2A receptors during extinction training in rats. Psychopharmacol 231:3179–3188

    Article  Google Scholar 

  • Palmatier M, Fung E, Bevins R (2003) Effects of chronic caffeine pre-exposure on conditioned and unconditioned psychomotor activity induced by nicotine and amphetamine in rats. Behav Pharmacol 14:191–198

    Article  CAS  PubMed  Google Scholar 

  • Perkins K, Sexton J, Stiller R, Fonte C, DiMarco A, Goettler J, Scierka A (1994) Subjective and cardiovascular responses to nicotine combined with caffeine during rest and casual activity. Psychopharmacol 113:438–444

    Article  CAS  Google Scholar 

  • Pohanka M (2015) The perspective of caffeine and caffeine derived compounds in therapy. Bratisl Lek Listy 116:520–30

    CAS  PubMed  Google Scholar 

  • Poleszak E, Malec D (2002) Adenosine receptor ligands and cocaine in conditioned place preference (CPP) test in rats. Pol J Pharmacol 54:119–126

    Article  CAS  PubMed  Google Scholar 

  • Prieto JP, Meikle M, López-Hill X, Urbanavicius J, Abin-Carriquiry A, Prunell G, Scorza MC (2012) Relevancia del adulterante activo cafeína en la acción estimulante de la pasta base de cocaína. Revista de Psiquiatría del Uruguay 76:35–48

    Google Scholar 

  • Prieto JP, Galvalisi M, López-Hill X, Meikle MN, Abin-Carriquiry JA, Scorza C (2015) Caffeine enhances and accelerates the expression of sensitization induced by coca paste indicating its relevance as a main adulterant. Am J Addict 24:475–481

    Article  PubMed  Google Scholar 

  • Regier P, Claxton A, Zlebnika N, Carroll M (2014) Cocaine-, caffeine-, and stress-evoked cocaine reinstatement in high vs. low impulsive rats: Treatment with allopregnanolone. Drug Alcohol Depend 143:58–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reissig C, Strain E, Griffiths R (2009) Caffeinated energy drinks—a growing problem. Drug Alcohol Depend 99:1–10

    Article  CAS  PubMed  Google Scholar 

  • Retzbach EP, Dholakiab P, Duncan-Vaidyab E (2014) The effect of daily caffeine exposure on lever-pressing for sucrose and c-Fos expression in the nucleus accumbens in the rat. Physiol Behav 135:1–6

    Article  CAS  PubMed  Google Scholar 

  • Richardson N, Roberts D (1996) Progressive ratio schedules in drug self-administration studies in rats: a method to evaluate reinforcing efficacy. J Neurosci Methods 66:1–11

    Article  CAS  PubMed  Google Scholar 

  • Rush C, Sullivan J, Griffiths R (1995) Intravenous caffeine in stimulant drug abusers: subjective reports and physiological effects. J. Pharmacol Exp Ther 273:351–358

    CAS  Google Scholar 

  • Schenk S, Valadez A, Horger B, Snow S, Wellman P (1994) Interactions between caffeine and cocaine in tests of self-administration. Behav Pharmacol 5:153–158

    Article  CAS  PubMed  Google Scholar 

  • Schenk S, Worley C, McNamara C, Valadez A (1996) Acute and repeated exposure to caffeine: effects on reinstatement of extinguished cocaine-taking behavior in rats. Psychopharmacology 126:17–23

    Article  CAS  PubMed  Google Scholar 

  • Sheppard B, Gross S, Pavelka S, Hall M, Palmatier M (2012) Caffeine increases the motivation to obtain non-drug reinforcers in rats. Drug Alcohol Depend 124:216–222

    Article  PubMed Central  Google Scholar 

  • Shoaib M, Swanner L, Yasar S, Goldberg S (1999) Chronic caffeine exposure potentiates nicotine self-administration in rats. Psychopharmacology 142:327–333

    Article  CAS  PubMed  Google Scholar 

  • Simola N, Cauli O, Morelli M (2006) Sensitization to caffeine and cross-sensitization to amphetamine: Influence of individual response to caffeine. Behav Brain Res 172:72–79

    Article  CAS  PubMed  Google Scholar 

  • Solinas M, Ferré S, You Z, Karcz-Kubicha M, Popoli P, Goldberg S (2002) Caffeine induces dopamine and glutamate relase in the shell of the nucleus Accumbens. J Neurosci 22:6321–6324

    CAS  PubMed  Google Scholar 

  • Strain E, Griffiths R (1995) Caffeine dependence: fact of fiction? J R Soc Med 88:437–440

    CAS  PubMed  PubMed Central  Google Scholar 

  • Strain E, Mumford G, Silverman K, Griffiths R (1994) Caffeine dependence syndrome evidence from case histories and experimental evaluations. JAMA 272:1043–1048

    Article  CAS  PubMed  Google Scholar 

  • Swanson J, Lee J, Hopp J (1994) Caffeine and nicotine: a review of their joint use and possible interactive effects in tobacco withdrawal. Addict Behav 19:229–256

    Article  CAS  PubMed  Google Scholar 

  • Tanda G, Goldberg SR (2000) Alteration of the behavioral effects of nicotine by chronic caffeine exposure. Pharmacol Biochem Behav May 66(1):47–64

    Article  CAS  Google Scholar 

  • Valentini V, Piras G, De Luca M, Perra V, Bordi F, Borsini F, Frau R, Di Chiara G (2013) Evidence for a role of a dopamine/5-HT6 receptor interaction in cocaine reinforcement. Neuropharmacol 65:58-64

  • Vanattou-Saïfoudine N, McNamara R, Harkin A (2012) Caffeine provokes adverse interactions with 3,4-methylenedioxymethamphetamine (MDMA, ‘ecstasy’) and related psychostimulants: mechanisms and mediators. Br J Pharmacol 167:946–959

    Article  PubMed  PubMed Central  Google Scholar 

  • Verster JC (2014) Caffeine consumption in children, adolescents and adults. Curr Drug Abuse Rev 7(3):133–4

    Article  CAS  PubMed  Google Scholar 

  • Volkow N, Wang G, Logan J, Alexoff D, Fowler J, Thanos P, Wong C, Casado V, Ferré S, Tomasi D (2015) Caffeine increases striatal dopamine D2/D3 receptor availability in the human brain. Transl Psychiatry 5:e549. doi:10.1038/tp.2015.46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Worley C, Valadez A, Schenk S (1994) Reinstatement of extinguished cocaine-taking behavior by cocaine and caffeine. Pharmacol Biochem and Behav 48:217–221

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors report no conflicts of interest. This study was supported by University of Cagliari and Fondazione Banco di Sardegna (local grant, CAR 2013-2014); Grant FCE 3/2013/1/100466, Smoked Cocaine in South Cone Countries Grant CICAD-OEA/USINL and PEDECIBA (Uruguay). José Pedro Prieto and Martín Galvalisi had postgraduate fellowships from ANII.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina Valentini.

Additional information

José Pedro Prieto and Cecilia Scorza contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prieto, J.P., Scorza, C., Serra, G.P. et al. Caffeine, a common active adulterant of cocaine, enhances the reinforcing effect of cocaine and its motivational value. Psychopharmacology 233, 2879–2889 (2016). https://doi.org/10.1007/s00213-016-4320-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-016-4320-z

Keywords

Navigation