Skip to main content
Log in

Antidepressant-like effects of guanfacine and sex-specific differences in effects on c-fos immunoreactivity and paired-pulse ratio in male and female mice

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

The a2A-noradrenergic agonist guanfacine can decreases stress-induced smoking in female, but not male, human smokers. It is not known whether these effects are due to effects on mood regulation and/or result from nicotinic-cholinergic interactions.

Objectives

The objective of the study was to determine whether there are sex differences in the effect of guanfacine in tests of anxiolytic and antidepressant efficacy in mice at baseline and in a hypercholinergic model of depression induced by the acetylcholinesterase inhibitor physostigmine.

Methods

The effects of guanfacine were measured in the light/dark box, tail suspension, and the forced swim test in female and male C57BL/6J mice. In parallel, electrophysiological properties were evaluated in the prefrontal cortex, a critical brain region involved in stress responses. c-fos immunoreactivity was measured in other brain regions known to regulate mood.

Results

Despite a baseline sex difference in behavior in the forced swim test (female mice were more immobile), guanfacine had similar, dose-dependent, antidepressant-like effects in mice of both sexes (optimal dose, 0.15 mg/kg). An antidepressant-like effect of guanfacine was also observed following pre-treatment with physostigmine. A sex difference in the paired-pulse ratio in the prefrontal cortex (PFC) (male, 1.4; female, 2.1) was observed at baseline that was normalized by guanfacine. Other brain areas involved in cholinergic control of depression-like behaviors, including the basolateral amygdala and lateral septum, showed sex-specific changes in c-fos expression.

Conclusions

Guanfacine has a robust antidepressant-like effect and can reverse a depression-like state induced by increased acetylcholine (ACh) signaling. These data suggest that different brain areas are recruited in female and male mice, despite similar behavioral responses to guanfacine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alarcon G, Cservenka A, Rudolph MD, Fair DA, Nagel BJ (2015) Developmental sex differences in resting state functional connectivity of amygdala sub-regions. Neuroimage 115:235–44

    Article  PubMed  Google Scholar 

  • Aston-Jones G, Kalivas PW (2008) Brain norepinephrine rediscovered in addiction research. Biol Psychiatry 63:1005–6

    Article  PubMed Central  PubMed  Google Scholar 

  • Beiranvand F, Zlabinger C, Orr-Urtreger A, Ristl R, Huck S, Scholze P (2014) Nicotinic acetylcholine receptors control acetylcholine and noradrenaline release in the rodent habenulo- interpeduncular complex. Br J Pharmacol 171:5209–24

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bourin M, Colombel MC, Malinge M, Bradwejn J (1991) Clonidine as a sensitizing agent in the forced swimming test for revealing antidepressant activity. J Psychiatry Neurosci 16:199–203

    PubMed Central  CAS  PubMed  Google Scholar 

  • Carcoba LM, Orfila JE, Natividad LA, Torres OV, Pipkin JA, Ferree PL, Castaneda E, Moss DE, O'Dell LE (2014) Cholinergic transmission during nicotine withdrawal is influenced by age and pre-exposure to nicotine: implications for teenage smoking. Dev Neurosci 36:347–55

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Carrier GO, Bishop VS (1972) The interaction of acetylcholine and norepinephrine on heart rate. J Pharmacol Exp Ther 180:31–7

    CAS  PubMed  Google Scholar 

  • Dell'Osso B, Palazzo MC, Oldani L, Altamura AC (2011) The noradrenergic action in antidepressant treatments: pharmacological and clinical aspects. CNS Neurosci Ther 17:723–32

    Article  PubMed  Google Scholar 

  • Devore S, Linster C (2012) Noradrenergic and cholinergic modulation of olfactory bulb sensory processing. Front Behav Neurosci 6:52

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dilsaver SC (1986) Cholinergic mechanisms in depression. Brain Res 396:285–316

    Article  CAS  PubMed  Google Scholar 

  • Esterlis I, Hannestad JO, Bois F, Sewell RA, Tyndale RF, Seibyl JP, Picciotto MR, Laruelle M, Carson RE, Cosgrove KP (2013a) Imaging changes in synaptic acetylcholine availability in living human subjects. J Nucl Med 54:78–82

    Article  PubMed Central  PubMed  Google Scholar 

  • Esterlis I, Ranganathan M, Bois F, Pittman B, Picciotto MR, Shearer L, Anticevic A, Carlson J, Niciu MJ, Cosgrove KP, D'Souza DC (2013b) In vivo evidence for beta 2 nicotinic acetylcholine receptor subunit upregulation in smokers as compared with nonsmokers with schizophrenia. Biological Psychiatry

  • Fenster CP, Whitworth TL, Sheffield EB, Quick MW, Lester RA (1999) Upregulation of surface alpha4beta2 nicotinic receptors is initiated by receptor desensitization after chronic exposure to nicotine. J Neurosci 19:4804–14

    CAS  PubMed  Google Scholar 

  • Fox H, Sinha R (2014) The role of guanfacine as a therapeutic agent to address stress-related pathophysiology in cocaine-dependent individuals. Adv Pharmacol 69:217–65

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fox HC, Morgan PT, Sinha R (2014) Sex differences in guanfacine effects on drug craving and stress arousal in cocaine-dependent individuals. Neuropsychopharmacology 39:1527–37

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fox H, Sofuoglu M, Sinha R (2015a) Guanfacine enhances inhibitory control and attentional shifting in early abstinent cocaine-dependent individuals. J Psychopharmacol 29:312–23

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fox ME, Studebaker RI, Swofford NJ, Wightman RM (2015b) Stress and drug dependence differentially modulate norepinephrine signaling in animals with varied HPA axis function. Neuropsychopharmacology 40(7):1752–61

    Article  CAS  PubMed  Google Scholar 

  • Glavin GB (1985) Stress and brain noradrenaline: a review. Neurosci Biobehav Rev 9:233–43

    Article  CAS  PubMed  Google Scholar 

  • Gold PW (2015) The organization of the stress system and its dysregulation in depressive illness. Mol Psychiatry 20:32–47

    Article  CAS  PubMed  Google Scholar 

  • Hains AB, Vu MA, Maciejewski PK, van Dyck CH, Gottron M, Arnsten AF (2009) Inhibition of protein kinase C signaling protects prefrontal cortex dendritic spines and cognition from the effects of chronic stress. Proc Natl Acad Sci U S A 106:17957–62

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hains AB, Yabe Y, Arnsten AF (2015) Chronic stimulation of alpha-2a-adrenoceptors with guanfacine protects rodent prefrontal cortex dendritic spines and cognition from the effects of chronic stress. Neurobiol Stress 2:1–9

    Article  PubMed  Google Scholar 

  • Hannestad JO, Cosgrove KP, DellaGioia NF, Perkins E, Bois F, Bhagwagar Z, Seibyl JP, McClure-Begley TD, Picciotto MR, Esterlis I (2013) Changes in the cholinergic system between bipolar depression and euthymia as measured with [123I]5IA single photon emission computed tomography. Biol Psychiatry 74:768–76

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Janowsky DS, Overstreet DH (1990a) Cholinergic dysfunction in depression. Pharmacol Toxicol 3:100–11

    Article  Google Scholar 

  • Janowsky DS, Overstreet DH (1990b) Cholinergic dysfunction in depression. Pharmacol Toxicol 66(Suppl 3):100–11

    Article  CAS  PubMed  Google Scholar 

  • Janowsky DS, El-Yousef MK, Davis JM, Sekerke HJ (1972) A cholinergic-adrenergic hypothesis of mania and depression. Lancet 2:632–5

    Article  CAS  PubMed  Google Scholar 

  • Kaufer D, Friedman A, Seidman S, Soreq H (1998) Acute stress facilitates long-lasting changes in cholinergic gene expression. Nature 393:373–7

    Article  CAS  PubMed  Google Scholar 

  • Martinowich K, Schloesser RJ, Lu Y, Jimenez DV, Paredes D, Greene JS, Greig NH, Manji HK, Lu B (2012) Roles of p75(NTR), long-term depression, and cholinergic transmission in anxiety and acute stress coping. Biol Psychiatry 71:75–83

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McElligott ZA, Fox ME, Walsh PL, Urban DJ, Ferrel MS, Roth BL, Wightman RM (2013) Noradrenergic synaptic function in the bed nucleus of the stria terminalis varies in animal models of anxiety and addiction. Neuropsychopharmacology 38:1665–73

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McKee SA, Potenza MN, Kober H, Sofuoglu M, Arnsten AF, Picciotto MR, Weinberger AH, Ashare R, Sinha R (2015) A translational investigation targeting stress-reactivity and prefrontal cognitive control with guanfacine for smoking cessation. J Psychopharmacol 29:300–11

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Milusheva E, Baranyi M, Zelles T, Mike A, Vizi ES (1994) Release of acetylcholine and noradrenaline from the cholinergic and adrenergic afferents in rat hippocampal CA1, CA3 and dentate gyrus regions. Eur J Neurosci 6:187–92

    Article  CAS  PubMed  Google Scholar 

  • Mineur YS, Somenzi O, Picciotto MR (2007) Cytisine, a partial agonist of high-affinity nicotinic acetylcholine receptors, has antidepressant-like properties in male C57BL/6J mice. Neuropharmacology 52:1256–62

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mineur YS, Obayemi A, Wigestrand MB, Fote GM, Calarco CA, Li AM, Picciotto MR (2013) Cholinergic signaling in the hippocampus regulates social stress resilience and anxiety- and depression-like behavior. Proc Natl Acad Sci U S A 110:3573–8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rabenstein RL, Caldarone BJ, Picciotto MR (2006) The nicotinic antagonist mecamylamine has antidepressant-like effects in wild-type but not beta2- or alpha7-nicotinic acetylcholine receptor subunit knockout mice. Psychopharmacology 189:395–401

    Article  CAS  PubMed  Google Scholar 

  • Risch SC, Cohen RM, Janowsky DS, Kalin NH, Murphy DL (1980) Mood and behavioral effects of physostigmine on humans are accompanied by elevations in plasma beta-endorphin and cortisol. Science 209:1545–6

    Article  CAS  PubMed  Google Scholar 

  • Risch SC, Cohen RM, Janowsky DS, Kalin NH, Sitaram N, Gillin JC, Murphy DL (1981) Physostigmine induction of depressive symptomatology in normal human subjects. Psychiatry Res 4:89–94

    Article  CAS  PubMed  Google Scholar 

  • Saricicek A, Esterlis I, Maloney KH, Mineur YS, Ruf BM, Muralidharan A, Chen JI, Cosgrove KP, Kerestes R, Ghose S, Tamminga CA, Pittman B, Bois F, Tamagnan G, Seibyl J, Picciotto MR, Staley JK, Bhagwagar Z (2012) Persistent beta2*-nicotinic acetylcholinergic receptor dysfunction in major depressive disorder. Am J Psychiatry 169:851–9

    Article  PubMed Central  PubMed  Google Scholar 

  • Schulz KP, Clerkin SM, Fan J, Halperin JM, Newcorn JH (2013) Guanfacine modulates the influence of emotional cues on prefrontal cortex activation for cognitive control. Psychopharmacology 226:261–71

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sepede G, Corbo M, Fiori F, Martinotti G (2012) Reboxetine in clinical practice: a review. La Clinica Ter 163:e255–62

    CAS  Google Scholar 

  • Shaltiel G, Hanan M, Wolf Y, Barbash S, Kovalev E, Shoham S, Soreq H (2013) Hippocampal microRNA-132 mediates stress-inducible cognitive deficits through its acetylcholinesterase target. Brain Struct Funct 218:59–72

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sillence MN, Tudor GD, Matthews ML, Lindsay DB (1992) Effects of the alpha 2-adrenoceptor agonist guanfacine on growth and thermogenesis in mice. J Anim Sci 70:3429–34

    CAS  PubMed  Google Scholar 

  • Sofuoglu M, Rosenheck R, Petrakis I (2014) Pharmacological treatment of comorbid PTSD and substance use disorder: recent progress. Addict Behav 39:428–33

    Article  PubMed  Google Scholar 

  • Sorkin EM, Heel RC (1986) Guanfacine. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy in the treatment of hypertension. Drugs 31:301–36

    Article  CAS  PubMed  Google Scholar 

  • Verplaetse TL, Weinberger AH, Smith PH, Cosgrove KP, Mineur YS, Picciotto MR, Mazure CM, McKee SA (2015) Targeting the noradrenergic system for gender-sensitive medication development for tobacco dependence. Nicotine Tob Res 17:486–495

    Article  PubMed  Google Scholar 

  • Weinberger AH, Smith PH, Kaufman M, McKee SA (2014) Consideration of sex in clinical trials of transdermal nicotine patch: a systematic review. Exp Clin Psychopharmacol 22:373–83

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson DS, Turner JR, Blendy JA, Gould TJ (2013) Genetic background influences the effects of withdrawal from chronic nicotine on learning and high-affinity nicotinic acetylcholine receptor binding in the dorsal and ventral hippocampus. Psychopharmacology 225:201–8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zaborszky L, Rosin DL, Kiss J (2004) Alpha-adrenergic receptor alpha2A is colocalized in basal forebrain cholinergic neurons: a light and electron microscopic double immunolabeling study. J Neurocytol 33:265–76

    Article  CAS  PubMed  Google Scholar 

  • Zhou WL, Antic SD (2012) Rapid dopaminergic and GABAergic modulation of calcium and voltage transients in dendrites of prefrontal cortex pyramidal neurons. J Physiol 590:3891–911

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by P50 DA033945 (ORWH, NIDA, FDA), MH077681, and MH105824.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina R. Picciotto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mineur, Y.S., Bentham, M.P., Zhou, WL. et al. Antidepressant-like effects of guanfacine and sex-specific differences in effects on c-fos immunoreactivity and paired-pulse ratio in male and female mice. Psychopharmacology 232, 3539–3549 (2015). https://doi.org/10.1007/s00213-015-4001-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-015-4001-3

Keywords

Navigation