Skip to main content

Advertisement

Log in

The influences of CYP2D6 genotypes and drug interactions on the pharmacokinetics of venlafaxine: exploring predictive biomarkers for treatment outcomes

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Two biomarkers: concentration ratio of O-desmethylvenlafaxine/venlafaxine and concentration sum of venlafaxine + O-desmethylvenlafaxine were adopted to indicate venlafaxine responses, but neither is validated.

Objectives

To evaluate the ability of two biomarkers in reflecting venlafaxine pharmacokinetic variations, and to further examine their relationship with venlafaxine treatment outcomes.

Methods

Two well-defined influencing factors: CYP2D6 genotypes and drug interactions were enriched into a three-period crossover study to produce venlafaxine pharmacokinetic variations: In each period, healthy CYP2D6 extensive metabolizers (EM group; n = 12) and CYP2D6*10/*10 intermediate metabolizers (IM group; n = 12) were pretreated with clarithromycin (CYP3A4 inhibitor), or nothing (control), or clarithromycin + paroxetine (CYP3A4 + CYP2D6 inhibitors), before administration of a single-dose of 75 mg venlafaxine. Both biomarkers were evaluated (1) for their relationship with the influencing factors in healthy volunteers and (2) for their relationships with the venlafaxine responses/adverse events reported in two patient studies.

Results

Significant venlafaxine pharmacokinetic variations were observed between the EM and IM groups (geometric mean ratio [95 % CI] of area under the curve, 3.0 [1.8–5.1] in the control period), and between the control and clarithromycin + paroxetine periods (4.1 [3.5–4.7] and 2.0 [1.7–2.4] in the EM and IM group, respectively). O-Desmethylvenlafaxine/venlafaxine was superior to venlafaxine + O-desmethylvenlafaxine to reflect the influencing factors. In the patient studies, O-desmethylvenlafaxine/venlafaxine > 4 showed high precision in predicting venlafaxine responders/partial-responders (92 %) and patients without venlafaxine-related adverse events (88 %); the O-desmethylvenlafaxine/venlafaxine < 4 and venlafaxine + O-desmethylvenlafaxine > 400 ng/ml combination showed higher precision (100 %) than O-desmethylvenlafaxine/venlafaxine < 4 alone (65 %) in predicting venlafaxine non-responders.

Conclusion

We propose using O-desmethylvenlafaxine/venlafaxine for CYP2D6 phenotyping, and O-desmethylvenlafaxine/venlafaxine with venlafaxine + O-desmethylvenlafaxine for predicting venlafaxine treatment outcomes in future prospective studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andrade L, Caraveo-Anduaga JJ, Berglund P, Bijl RV, De Graaf R, Vollebergh W, Dragomirecka E, Kohn R, Keller M, Kessler RC, Kawakami N, Kilic C, Offord D, Ustun TB, Wittchen HU (2003) The epidemiology of major depressive episodes: results from the International Consortium of Psychiatric Epidemiology (ICPE) surveys. Int J Methods Psychiatr Res 12:3–21

    Article  PubMed  Google Scholar 

  • Bachmeier CJ, Beaulieu-Abdelahad D, Ganey NJ, Mullan MJ, Levin GM (2011) Induction of drug efflux protein expression by venlafaxine but not desvenlafaxine. Biopharm Drug Dispos 32:233–244

    Article  CAS  PubMed  Google Scholar 

  • Brent D, Melhem N, Ferrell R, Emslie G, Wagner KD, Ryan N, Vitiello B, Birmaher B, Mayes T, Zelazny J, Onorato M, Devlin B, Clarke G, DeBar L, Keller M (2010) Association of FKBP5 polymorphisms with suicidal events in the Treatment of Resistant Depression in Adolescents (TORDIA) study. Am J Psychiatry 167:190–197

    Article  PubMed Central  PubMed  Google Scholar 

  • Crews KR, Hicks JK, Pui CH, Relling MV, Evans WE (2012) Pharmacogenomics and individualized medicine: translating science into practice. Clin Pharmacol Ther 92:467–475

    PubMed Central  CAS  PubMed  Google Scholar 

  • de Silva VA, Hanwella R (2012) Efficacy and tolerability of venlafaxine versus specific serotonin reuptake inhibitors in treatment of major depressive disorder: a meta-analysis of published studies. Int Clin Psychopharmacol 27:8–16

    Article  PubMed  Google Scholar 

  • Entsuah AR, Huang H, Thase ME (2001) Response and remission rates in different subpopulations with major depressive disorder administered venlafaxine, selective serotonin reuptake inhibitors, or placebo. J Clin Psychiatry 62:869–877

    Article  CAS  PubMed  Google Scholar 

  • Ereshefsky L, Dugan D (2000) Review of the pharmacokinetics, pharmacogenetics, and drug interaction potential of antidepressants: focus on venlafaxine. Depress Anxiety 12(Suppl 1):30–44

    Article  PubMed  Google Scholar 

  • Flockhart D (2007) Drug interactions: cytochrome P450 drug interaction table. Indiana University School of Medicine

  • Fukuda T, Yamamoto I, Nishida Y, Zhou Q, Ohno M, Takada K, Azuma J (1999) Effect of the CYP2D6*10 genotype on venlafaxine pharmacokinetics in healthy adult volunteers. Br J Clin Pharmacol 47:450–453

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gex-Fabry M, Balant-Gorgia AE, Balant LP, Rudaz S, Veuthey JL, Bertschy G (2004) Time course of clinical response to venlafaxine: relevance of plasma level and chirality. Eur J Clin Pharmacol 59:883–891

    Article  CAS  PubMed  Google Scholar 

  • Gu L, Xie J, Long J, Chen Q, Pan R, Yan Y, Wu G, Liang B, Tan J, Xie X, Wei B, Su L (2013) Epidemiology of major depressive disorder in mainland china: a systematic review. PLoS ONE 8:e65356

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hynninen VV, Olkkola KT, Bertilsson L, Kurkinen K, Neuvonen PJ, Laine K (2008) Effect of terbinafine and voriconazole on the pharmacokinetics of the antidepressant venlafaxine. Clin Pharmacol Ther 83:342–348

    Article  PubMed  Google Scholar 

  • Karlsson L, Schmitt U, Josefsson M, Carlsson B, Ahlner J, Bengtsson F, Kugelberg FC, Hiemke C (2010) Blood–brain barrier penetration of the enantiomers of venlafaxine and its metabolites in mice lacking P-glycoprotein. Eur Neuropsychopharmacol 20:632–640

    Article  CAS  PubMed  Google Scholar 

  • Kirchheiner J, Lorch R, Lebedeva E, Seeringer A, Roots I, Sasse J, Brockmoller J (2008) Genetic variants in FKBP5 affecting response to antidepressant drug treatment. Pharmacogenomics 9:841–846

    Article  CAS  PubMed  Google Scholar 

  • Lindh JD, Annas A, Meurling L, Dahl ML AAL-S (2003) Effect of ketoconazole on venlafaxine plasma concentrations in extensive and poor metabolisers of debrisoquine. Eur J Clin Pharmacol 59:401–406

    Article  CAS  PubMed  Google Scholar 

  • Lobello KW, Preskorn SH, Guico-Pabia CJ, Jiang Q, Paul J, Nichols AI, Patroneva A, Ninan PT (2010) Cytochrome P450 2D6 phenotype predicts antidepressant efficacy of venlafaxine: a secondary analysis of 4 studies in major depressive disorder. J Clin Psychiatry 71:1482–1487

    Article  CAS  PubMed  Google Scholar 

  • Lohoff FW, Narasimhan S, Rickels K (2013) Interaction between polymorphisms in serotonin transporter (SLC6A4) and serotonin receptor 2A (HTR2A) genes predict treatment response to venlafaxine XR in generalized anxiety disorder. Pharmacogenomics J 13:464–469

    Article  CAS  PubMed  Google Scholar 

  • Macaluso M, Preskorn SH (2011) CYP 2D6 PM status and antidepressant response to nortriptyline and venlafaxine: is it more than just drug metabolism? J Clin Psychopharmacol 31:143–145

    Article  PubMed  Google Scholar 

  • Mackinnon A (2000) A spreadsheet for the calculation of comprehensive statistics for the assessment of diagnostic tests and inter-rater agreement. Comput Biol Med 30:127–134

    Article  CAS  PubMed  Google Scholar 

  • Myrand SP, Sekiguchi K, Man MZ, Lin X, Tzeng RY, Teng CH, Hee B, Garrett M, Kikkawa H, Lin CY, Eddy SM, Dostalik J, Mount J, Azuma J, Fujio Y, Jang IJ, Shin SG, Bleavins MR, Williams JA, Paulauskis JD, Wilner KD (2008) Pharmacokinetics/genotype associations for major cytochrome P450 enzymes in native and first- and third-generation Japanese populations: comparison with Korean, Chinese, and Caucasian populations. Clin Pharmacol Ther 84:347–361

    Article  CAS  PubMed  Google Scholar 

  • Ohayon MM, Hong SC (2006) Prevalence of major depressive disorder in the general population of South Korea. J Psychiatr Res 40:30–36

    Article  PubMed  Google Scholar 

  • Patterson SD, Cohen N, Karnoub M, Truter SL, Emison E, Khambata-Ford S, Spear B, Ibia E, Sproule R, Barnes D, Bhathena A, Bristow MR, Russell C, Wang D, Warner A, Westelinck A, Brian W, Snapir A, Franc MA, Wong P, Shaw PM (2011) Prospective-retrospective biomarker analysis for regulatory consideration: white paper from the industry pharmacogenomics working group. Pharmacogenomics 12:939–951

    Article  PubMed  Google Scholar 

  • PharmGKB (2011) Dutch Pharmacogenetics Working Group guideline for venlafaxine and CYP2D6. Pharmacogenomics Knowledge Base

  • Preskorn SH (2010) Understanding outliers on the usual dose–response curve: venlafaxine as a way to phenotype patients in terms of their CYP 2D6 status and why it matters. J Psychiatr Pract 16:46–49

    Article  PubMed  Google Scholar 

  • Preskorn S, Patroneva A, Silman H, Jiang Q, Isler JA, Burczynski ME, Ahmed S, Paul J, Nichols AI (2009) Comparison of the pharmacokinetics of venlafaxine extended release and desvenlafaxine in extensive and poor cytochrome P450 2D6 metabolizers. J Clin Psychopharmacol 29:39–43

    Article  PubMed  Google Scholar 

  • Preskorn SH, Kane CP, Lobello K, Nichols AI, Fayyad R, Buckley G, Focht K, Guico-Pabia CJ (2013) Cytochrome P450 2D6 phenoconversion is common in patients being treated for depression: implications for personalized medicine. J Clin Psychiatry 74:614–621

    Article  CAS  PubMed  Google Scholar 

  • Sakolsky DJ, Perel JM, Emslie GJ, Clarke GN, Wagner KD, Vitiello B, Keller MB, Birmaher B, Asarnow JR, Ryan ND, McCracken JT, Strober MJ, Iyengar S, Porta G, Brent DA (2011) Antidepressant exposure as a predictor of clinical outcomes in the Treatment of Resistant Depression in Adolescents (TORDIA) study. J Clin Psychopharmacol 31:92–97

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shams ME, Arneth B, Hiemke C, Dragicevic A, Muller MJ, Kaiser R, Lackner K, Hartter S (2006) CYP2D6 polymorphism and clinical effect of the antidepressant venlafaxine. J Clin Pharm Ther 31:493–502

    Article  CAS  PubMed  Google Scholar 

  • Veefkind AH, Haffmans PM, Hoencamp E (2000) Venlafaxine serum levels and CYP2D6 genotype. Ther Drug Monit 22:202–208

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant (11181MFDS655) from Ministry of Food and Drug Safety in 2011.

Conflicts of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myeon-Woo Chung.

Additional information

Hae-Deun Kim and Fen Jiang have contributed equally to this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM (DOC 50 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, F., Kim, HD., Na, HS. et al. The influences of CYP2D6 genotypes and drug interactions on the pharmacokinetics of venlafaxine: exploring predictive biomarkers for treatment outcomes. Psychopharmacology 232, 1899–1909 (2015). https://doi.org/10.1007/s00213-014-3825-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-014-3825-6

Keywords

Navigation