Skip to main content

Advertisement

Log in

Nicotine effects in adolescence and adulthood on cognition and α4β2-nicotinic receptors in the neonatal ventral hippocampal lesion rat model of schizophrenia

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rational

Nicotine use in schizophrenia has traditionally been explained as “self-medication” of cognitive and/or nicotinic acetylcholinergic receptor (nAChR) abnormalities.

Objectives

We test this hypothesis in a neurodevelopmental rat model of schizophrenia that shows increased addiction behaviors including enhanced nicotine reinforcement and drug-seeking.

Methods

Nicotine transdermal patch (5 mg/kg/day vs. placebo × 10 days in adolescence or adulthood) effects on subsequent radial-arm maze learning (15 sessions) and frontal-cortical-striatal nAChR densities (α4β2; [3H]-epibatidine binding) were examined in neonatal ventral hippocampal lesion (NVHL) and SHAM-operated rats.

Results

NVHL cognitive deficits were not differentially affected by nicotine history compared to SHAMs. Nicotine history produced minimal cognitive effects while increasing food–reward consumption on the maze, compounding with NVHL-induced overconsumption. Acute nicotine (0.5 mg/kg) delivered before the final maze sessions produced modest improvements in maze performance in rats with nicotine patch histories only, but not differentially so in NVHLs. Consistent with in vivo neuroimaging of β2 nAChR binding in schizophrenia smokers vs. non-smokers and healthy controls, adult NVHLs showed 12% reductions in nAChR binding in MPFC (p < 0.05) but not ventral striatum (<5% changes, p > .40), whereas nicotine history elevated nAChRs across both regions (>30%, p < 0.001) without interacting with NVHLs. Adolescent vs. adult nicotine exposure did not alter nAChRs differentially.

Conclusions

Although replicating nicotine-induced upregulation of nAChRs in human smokers and demonstrating NVHL validity in terms of schizophrenia-associated nAChR density patterns, these findings do not support hypotheses explaining increased nicotine use in schizophrenia as reflecting illness-specific effects of nicotine to therapeutically alter cognition or nAChR densities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alexander KS, Brooks JM, Sarter M, Bruno JP (2009) Disruption of mesolimbic regulation of prefrontal cholinergic transmission in an animal model of schizophrenia and normalization by chronic clozapine treatment. Neuropsychopharmacology 34:2710–2720

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Benowitz NL, Hansson A, Jacob P 3rd (2002) Cardiovascular effects of nasal and transdermal nicotine and cigarette smoking. Hypertension 39:1107–1112

    Article  CAS  PubMed  Google Scholar 

  • Berg SA, Chambers RA (2008) Accentuated behavioral sensitization to nicotine in the neonatal ventral hippocampal lesion model of schizophrenia. Neuropharmacology 54:1201–1207

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Berg SA, Czachowski CL, Chambers RA (2011) Alcohol seeking and consumption in the NVHL neurodevelopmental rat model of schizophrenia. Behav Brain Res 218:346–349

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Berg SA, Sentir AM, Cooley BS, Engleman EA, Chambers RA (2013) Nicotine is more addictive, not more cognitively therapeutic in a neurodevelopmental model of schizophrenia produced by neonatal ventral hippocampal lesions. Addict Biol

  • Breese CR, Lee MJ, Adams CE, Sullivan B, Logel J, Gillen KM, Marks MJ, Collins AC, Leonard S (2000) Abnormal regulation of high affinity nicotinic receptors in subjects with schizophrenia. Neuropsychopharmacology 23:351–364

    Article  CAS  PubMed  Google Scholar 

  • Callaghan RC, Veldhuizen S, Jeysingh T, Orlan C, Graham C, Kakouris G, Remington G, Gatley J (2014) Patterns of tobacco-related mortality among individuals diagnosed with schizophrenia, bipolar disorder, or depression. J Psychiatr Res 48:102–110

    Article  PubMed  Google Scholar 

  • Cavazos-Rehg PA, Breslau N, Hatsukami D, Krauss MJ, Spitznagel EL, Grucza RA, Salyer P, Hartz SM, Bierut LJ (2014) Smoking cessation is associated with lower rates of mood/anxiety and alcohol use disorders. Psychol Med 44:2523–2535

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chambers RA, Lipska BK (2011) A method to the madness: producing the neonatal ventral hippocampal lesion rat model of schizophrenia. In: O’Donnell P (ed) Animal models of schizophrenia and related disorders. Humana Press, Totowa

    Google Scholar 

  • Chambers RA, McClintick JN, Sentir AM, Berg SA, Runyan M, Choi KH, Edenberg HJ (2013) Cortical-striatal gene expression in neonatal hippocampal lesion (NVHL)-amplified cocaine sensitization. Genes Brain Behav 12:564–575

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chambers RA, Moore J, McEvoy JP, Levin ED (1996) Cognitive effects of neonatal hippocampal lesions in a rat model of schizophrenia. Neuropsychopharmacology 15:587–594

    Article  CAS  PubMed  Google Scholar 

  • Chambers RA, Self DW (2002) Motivational responses to natural and drug rewards in rats with neonatal ventral hippocampal lesions: an animal model of dual diagnosis schizophrenia. Neuropsychopharmacology 27:889–905

    Article  PubMed Central  PubMed  Google Scholar 

  • Chambers RA, Taylor JR, Potenza MN (2003) Developmental neurocircuitry of motivation in adolescence: a critical period of addiction vulnerability. Am J Psychiatry 160:1041–1052

    Article  PubMed Central  PubMed  Google Scholar 

  • Chen J, Millar WJ (1998) Age of smoking initiation: implications for quitting. Health Rep 9: 39-46(Eng); 39-48(Fre)

  • Cocores JA, Gold MS (2008) Varenicline, appetite, and weight reduction. J Neuropsychiatry Clin Neurosci 20:497–498

    Article  PubMed  Google Scholar 

  • Counotte DS, Goriounova NA, Li KW, Loos M, van der Schors RC, Schetters D, Schoffelmeer AN, Smit AB, Mansvelder HD, Pattij T, Spijker S (2011) Lasting synaptic changes underlie attention deficits caused by nicotine exposure during adolescence. Nat Neurosci 14:417–419

    Article  CAS  PubMed  Google Scholar 

  • D’Souza DC, Esterlis I, Carbuto M, Krasenics M, Seibyl J, Bois F, Pittman B, Ranganathan M, Cosgrove K, Staley J (2012) Lower beta-2*-nicotinic acetylcholine receptor availability in smokers with schizophrenia. Am J Psychiatry 169:326–334

    Article  PubMed  Google Scholar 

  • Dalack GW, Healy DJ, Meador-Woodruff JH (1998) Nicotine dependence in schizophrenia: clinical phenomena and laboratory findings. Am J Psychiatry 155:1490–1501

    Article  CAS  PubMed  Google Scholar 

  • de Leon J, Diaz FJ (2005) A meta-analysis of worldwide studies demonstrates an association between schizophrenia and tobacco smoking behaviors. Schizophr Res 76:135–157

    Article  PubMed  Google Scholar 

  • Dickerson F, Stallings CR, Origoni AE, Vaughan C, Khushalani S, Schroeder J, Yolken RH (2013) Cigarette smoking among persons with schizophrenia or bipolar disorder in routine clinical settings, 1999–2011. Psychiatr Serv 64:44–50

    Article  PubMed  Google Scholar 

  • Durany N, Zochling R, Boissl KW, Paulus W, Ransmayr G, Tatschner T, Danielczyk W, Jellinger K, Deckert J, Riederer P (2000) Human post-mortem striatal alpha4beta2 nicotinic acetylcholine receptor density in schizophrenia and Parkinson’s syndrome. Neurosci Lett 287:109–112

    Article  CAS  PubMed  Google Scholar 

  • Ernst M, Heishman SJ, Spurgeon L, London ED (2001) Smoking history and nicotine effects on cognitive performance. Neuropsychopharmacology 25:313–319

    Article  CAS  PubMed  Google Scholar 

  • Esterlis I, Ranganathan M, Bois F, Pittman B, Picciotto MR, Shearer L, Anticevic A, Carlson J, Niciu MJ, Cosgrove KP, D’Souza DC (2014) In vivo evidence for beta nicotinic acetylcholine receptor subunit upregulation in smokers as compared with nonsmokers with schizophrenia. Biol Psychiatry 76:495–502

    Article  CAS  PubMed  Google Scholar 

  • Fagerstrom KO, Hughes JR (2002) Nicotine concentrations with concurrent use of cigarettes and nicotine replacement: a review. Nicotine Tob Res 4(Suppl 2):S73–S79

    Article  PubMed  Google Scholar 

  • Freedman R, Hall M, Adler LE, Leonard S (1995) Evidence in postmortem brain tissue for decreased numbers of hippocampal nicotinic receptors in schizophrenia. Biol Psychiatry 38:22–33

    Article  CAS  PubMed  Google Scholar 

  • Hahn B, Harvey AN, Concheiro-Guisan M, Huestis MA, Holcomb HH, Gold JM (2013) A test of the cognitive self-medication hypothesis of tobacco smoking in schizophrenia. Biol Psychiatry 74:436–443

    Article  PubMed Central  PubMed  Google Scholar 

  • Harris JG, Kongs S, Allensworth D, Martin L, Tregellas J, Sullivan B, Zerbe G, Freedman R (2004) Effects of nicotine on cognitive deficits in schizophrenia. Neuropsychopharmacology 29:1378–1385

    Article  CAS  PubMed  Google Scholar 

  • Laplante F, Srivastava LK, Quirion R (2004a) Alterations in dopaminergic modulation of prefrontal cortical acetylcholine release in post-pubertal rats with neonatal ventral hippocampal lesions. J Neurochem 89:314–323

    Article  CAS  PubMed  Google Scholar 

  • Laplante F, Stevenson CW, Gratton A, Srivastava LK, Quirion R (2004b) Effects of neonatal ventral hippocampal lesion in rats on stress-induced acetylcholine release in the prefrontal cortex. J Neurochem 91:1473–1482

    Article  CAS  PubMed  Google Scholar 

  • Leonard S, Mexal S, Freedman R (2007) Smoking, genetics and schizophrenia: evidence for self medication. J Dual Diagn 3:43–59

    Article  PubMed Central  PubMed  Google Scholar 

  • Levin ED, Rose JE (1991) Nicotinic and muscarinic interactions and choice accuracy in the radial-arm maze. Brain Res Bull 27:125–128

    Article  CAS  PubMed  Google Scholar 

  • Lipska BK, Jaskiw GE, Weinberger DR (1993) Postpubertal emergence of hyperresponsiveness to stress and to amphetamine after neonatal excitotoxic hippocampal damage: a potential animal model of schizophrenia. Neuropsychopharmacology 9:67–75

    Article  CAS  PubMed  Google Scholar 

  • Matta SG, Balfour DJ, Benowitz NL, Boyd RT, Buccafusco JJ, Caggiula AR, Craig CR, Collins AC, Damaj MI, Donny EC, Gardiner PS, Grady SR, Heberlein U, Leonard SS, Levin ED, Lukas RJ, Markou A, Marks MJ, McCallum SE, Parameswaran N, Perkins KA, Picciotto MR, Quik M, Rose JE, Rothenfluh A, Schafer WR, Stolerman IP, Tyndale RF, Wehner JM, Zirger JM (2007) Guidelines on nicotine dose selection for in vivo research. Psychopharmacology (Berl) 190:269–319

    Article  CAS  Google Scholar 

  • McCreadie RG (2003) Diet, smoking and cardiovascular risk in people with schizophrenia: descriptive study. Br J Psychiatry 183:534–539

    Article  CAS  PubMed  Google Scholar 

  • McDermott MS, Marteau TM, Hollands GJ, Hankins M, Aveyard P (2013) Change in anxiety following successful and unsuccessful attempts at smoking cessation: cohort study. Br J Psychiatry 202:62–67

    Article  PubMed  Google Scholar 

  • Mojtabai R, Crum RM (2013) Cigarette smoking and onset of mood and anxiety disorders. Am J Public Health 103:1656–1665

    Article  PubMed Central  PubMed  Google Scholar 

  • Mokdad AH, Marks JS, Stroup DF, Gerberding JL (2004) Actual causes of death in the United States, 2000. Jama 291:1238–1245

    Article  PubMed  Google Scholar 

  • Moran LV, Sampath H, Kochunov P, Hong LE (2013) Brain circuits that link schizophrenia to high risk of cigarette smoking. Schizophr Bull 39:1373–1381

    Article  PubMed Central  PubMed  Google Scholar 

  • Nguyen HN, Rasmussen BA, Perry DC (2004) Binding and functional activity of nicotinic cholinergic receptors in selected rat brain regions are increased following long-term but not short-term nicotine treatment. J Neurochem 90:40–49

    Article  CAS  PubMed  Google Scholar 

  • O’Dell LE, Bruijnzeel AW, Ghozland S, Markou A, Koob GF (2004) Nicotine withdrawal in adolescent and adult rats. Ann N Y Acad Sci 1021:167–174

    Article  PubMed  Google Scholar 

  • Perry DC, Xiao Y, Nguyen HN, Musachio JL, Davila-Garcia MI, Kellar KJ (2002) Measuring nicotinic receptors with characteristics of alpha4beta2, alpha3beta2 and alpha3beta4 subtypes in rat tissues by autoradiography. J Neurochem 82:468–481

    Article  CAS  PubMed  Google Scholar 

  • Picciotto MR, Zoli M, Rimondini R, Lena C, Marubio LM, Pich EM, Fuxe K, Changeux JP (1998) Acetylcholine receptors containing the beta2 subunit are involved in the reinforcing properties of nicotine. Nature 391:173–177

    Article  CAS  PubMed  Google Scholar 

  • Potter D, Summerfelt A, Gold J, Buchanan RW (2006) Review of clinical correlates of P50 sensory gating abnormalities in patients with schizophrenia. Schizophr Bull 32:692–700

    Article  PubMed Central  PubMed  Google Scholar 

  • Prochaska JJ, Fromont SC, Wa C, Matlow R, Ramo DE, Hall SM (2013) Tobacco use and its treatment among young people in mental health settings: a qualitative analysis. Nicotine Tob Res 15:1427–1435

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Quisenaerts C, Morrens M, Hulstijn W, de Bruijn E, Timmers M, Streffer J, De la Asuncion J, Dumont G, Sabbe B (2014) The nicotinergic receptor as a target for cognitive enhancement in schizophrenia: barking up the wrong tree? Psychopharmacology (Berl) 231:543–550

    Article  CAS  Google Scholar 

  • Roh S, Hoeppner SS, Schoenfeld D, Fullerton CA, Stoeckel LE, Evins AE (2014) Acute effects of mecamylamine and varenicline on cognitive performance in non-smokers with and without schizophrenia. Psychopharmacology (Berl) 231:765–775

    Article  CAS  Google Scholar 

  • Sabri O, Kendziorra K, Wolf H, Gertz HJ, Brust P (2008) Acetylcholine receptors in dementia and mild cognitive impairment. Eur J Nucl Med Mol Imaging 35(Suppl 1):S30–S45

    Article  CAS  PubMed  Google Scholar 

  • Slawecki CJ, Thorsell AK, El Khoury A, Mathe AA, Ehlers CL (2005) Increased CRF-like and NPY-like immunoreactivity in adult rats exposed to nicotine during adolescence: relation to anxiety-like and depressive-like behavior. Neuropeptides 39:369–377

    Article  CAS  PubMed  Google Scholar 

  • Smith RC, Singh A, Infante M, Khandat A, Kloos A (2002) Effects of cigarette smoking and nicotine nasal spray on psychiatric symptoms and cognition in schizophrenia. Neuropsychopharmacology 27:479–497

    Article  CAS  PubMed  Google Scholar 

  • Stamford BA, Matter S, Fell RD, Papanek P (1986) Effects of smoking cessation on weight gain, metabolic rate, caloric consumption, and blood lipids. Am J Clin Nutr 43:486–494

    CAS  PubMed  Google Scholar 

  • Swanson LW (2004) Brain maps: structure of the rat brain, 3rd edn. Elsevier, Elsevier

  • Taylor G, McNeill A, Girling A, Farley A, Lindson-Hawley N, Aveyard P (2014) Change in mental health after smoking cessation: systematic review and meta-analysis. BMJ 348:g1151

    Article  PubMed Central  PubMed  Google Scholar 

  • Tseng KY, Chambers RA, Lipska BK (2009) The neonatal ventral hippocampal lesion as a heuristic neurodevelopmental model of schizophrenia. Behav Brain Res 204:295–305

    Article  PubMed Central  PubMed  Google Scholar 

  • Tseng KY, Lewis BL, Hashimoto T, Sesack SR, Kloc M, Lewis DA, O’Donnell P (2008) A neonatal ventral hippocampal lesion causes functional deficits in adult prefrontal cortical interneurons. J Neurosci 28:12691–12699

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Weinberger DR (1987) Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 44:660–669

    Article  CAS  PubMed  Google Scholar 

  • Williams JM, Ziedonis DM, Abanyie F, Steinberg ML, Foulds J, Benowitz NL (2005) Increased nicotine and cotinine levels in smokers with schizophrenia and schizoaffective disorder is not a metabolic effect. Schizophr Res 79:323–335

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors sincerely thank Irina Esterlis et al. for their permission to represent their comparable human data in graphical form for this manuscript (Esterlis et al. 2014). Of note, the Yale (human) and IU (animal modeling) investigative teams were not aware of each other’s parallel study designs or results until after publication of Esterlis et al. and manuscript preparation of this report.

Funding

This study was supported by NSF GK-12 Doctoral Training Program Grant (SAB) and NIAAA (R01 AA020396) (EAE).

Conflict of interest

The authors have no conflicts of interest to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Andrew Chambers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berg, S.A., Sentir, A.M., Bell, R.L. et al. Nicotine effects in adolescence and adulthood on cognition and α4β2-nicotinic receptors in the neonatal ventral hippocampal lesion rat model of schizophrenia. Psychopharmacology 232, 1681–1692 (2015). https://doi.org/10.1007/s00213-014-3800-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-014-3800-2

Keywords

Navigation