Skip to main content

Advertisement

Log in

Distribution pattern of mirtazapine and normirtazapine in blood and CSF

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

The aim of this study was to investigate the distribution pattern of mirtazapine and its metabolite normirtazapine (N-desmethylmirtazapine) in blood and cerebrospinal fluid (CSF).

Objectives and methods

Concentrations of mirtazapine were measured in blood serum and CSF of 16 patients treated with daily doses of 7.5–60 mg. Daily doses were correlated with serum and CSF concentrations as well as serum levels with those in CSF.

Results

Serum levels of mirtazapine and normirtazapine showed a strong relation to the daily dose of mirtazapine of r = +0.631 and r = +0.732, respectively (p < 0.01). Between the daily doses and the CSF levels of both mirtazapine and normirtazapine, we only found a trend-wise correlation (r = +0.535, p = 0.060). The correlation between mirtazapine and normirtazapine in serum and CSF was highly significant (r = +0.664, p = 0.005 and r = +0.885, p < 0.001, respectively). High discrepancies between (total) mirtazapine levels in serum and CSF indicate a low penetration into CSF with regard to the total serum concentration as the mean of the calculated penetration ratio was 0.16 (SD = 0.11). By correcting the penetration ratio for the plasma protein binding, the mean CSF/serum ratio for the unbound fraction was 1.05 (SD 0.72, range 0.56–3.19) indicating a high passage into CSF.

Conclusions

Findings indicate a good ability of mirtazapine and normirtazapine to overcome the blood-cerebrospinal fluid barrier and suggest a high ability to enter the brain with sufficient drug levels at the target sites within the brain contributing to clinical efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

BCSFB:

Blood-cerebrospinal fluid barrier

BBB:

Blood-brain barrier

CNS:

Central nervous system

CSF:

Cerebrospinal fluid

NaSSA:

Noradrenergic and specific serotonergic antidepressant

References

  • Baumann P, Jonzier-Perey M, Paus E, Nikisch G (2006) Mirtazapine enantiomers in blood and cerebrospinal fluid. Neuropsychobiology 54(3):179–181

    Article  CAS  PubMed  Google Scholar 

  • Brockmöller J, Meineke I, Kirchheiner J (2007) Pharmacokinetics of mirtazapine: enantioselective effects of the CYP2D6 ultra rapid metabolizer genotype and correlation with adverse effects. Clin Pharmacol Ther 81(5):699–707

    Article  PubMed  Google Scholar 

  • de Boer A, Gaillard P (2007) Drug targeting to the brain. Annu Rev Pharmacol Toxicol 47:323–355

    Article  PubMed  Google Scholar 

  • de Lange E (2004) Potential role of ABC transporters as a detoxification system at the blood-CSF barrier. Adv Drug Deliv Rev 56(12):1793–1809

    Article  PubMed  Google Scholar 

  • de Lange EC (2013) Utility of CSF in translational neuroscience. J Pharmacokinet Pharmacodyn :1–12

  • de Lange ECM, Danhof M (2002) Considerations in the use of cerebrospinal fluid pharmacokinetics to predict brain target concentrations in the clinical setting. Clin Pharmacokinet 41(10):691–703

    Article  PubMed  Google Scholar 

  • Delbressine L, Moonen M, Kaspersen F, Wagenaars G, Jacobs P, Timmer C, Paanakker J, Van Hal H, Voortman G (1998) Pharmacokinetics and biotransformation of mirtazapine in human volunteers. Clin Drug Investig 15(1):45–55

    Article  CAS  PubMed  Google Scholar 

  • Freynhagen R, Vogt J, Lipfert P, Muth-Selbach U (2006) Mirtazapine and its enantiomers differentially modulate acute thermal nociception in rats. Brain Res Bull 69(2):168–173

    Article  CAS  PubMed  Google Scholar 

  • Hammarlund-Udenaes M, Fridén M, Syvänen S, Gupta A (2008) On the rate and extent of drug delivery to the brain. Pharm Res 25(8):1737–1750

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hiemke C, Baumann P, Bergemann N, Conca A, Dietmaier O, Egberts K, Fric M, Gerlach M, Greiner C, Gründer G, Haen E, Havemann-Reinecke U, Jaquenoud Sirot E, Kirchherr H, Laux G, Lutz UC, Messer T, Müller MJ, Pfuhlmann B, Rambeck B, Riederer P, Schoppek B, Stingl J, Uhr M, Ulrich S, Waschgler R, Zernig G (2011) AGNP consensus guidelines for therapeutic drug monitoring in psychiatry: update 2011. Pharmacopsychiatry 44(6):195–235

    Article  Google Scholar 

  • Kelder J, Grootenhuis PDJ, Bayada DM, Delbressine LPC, Ploemen J-P (1999) Polar molecular surface as a dominating determinant for oral absorption and brain penetration of drugs. Pharm Res 16(10):1514–1519

    Article  CAS  PubMed  Google Scholar 

  • Kodaira H, Kusuhara H, Fujita T, Ushiki J, Fuse E, Sugiyama Y (2011) Quantitative evaluation of the impact of active efflux by p-glycoprotein and breast cancer resistance protein at the blood-brain barrier on the predictability of the unbound concentrations of drugs in the brain using cerebrospinal fluid concentration as a surrogate. J Pharmacol Exp Ther 339(3):935–944

    Article  CAS  PubMed  Google Scholar 

  • Little JT, Ketter TA, Mathé AA, Frye MA, Luckenbaugh D, Post RM (1999) Venlafaxine but not bupropion decreases cerebrospinal fluid 5-hydroxyindoleacetic acid in unipolar depression. Biol Psychiatry 45(3):285–289

    Article  CAS  PubMed  Google Scholar 

  • Löscher W, Potschka H (2005) Drug resistance in brain diseases and the role of drug efflux transporters. Nat Rev Neurosci 6(8):591–602

    Article  PubMed  Google Scholar 

  • Merck (2009) REMERON (mirtazapine) tablets—prescribing information

  • Morrey JD, Olsen AL, Siddharthan V, Motter NE, Wang H, Taro BS, Chen D, Ruffner D, Hall JO (2008) Increased blood-brain barrier permeability is not a primary determinant for lethality of West Nile virus infection in rodents. J Gen Virol 89(2):467–473

    Article  CAS  PubMed  Google Scholar 

  • Nikisch G, Baumann P, Wiedemann G, Kiessling B, Weisser H, Hertel A, Yoshitake T, Kehr J, Mathé AA (2010) Quetiapine and norquetiapine in plasma and cerebrospinal fluid of schizophrenic patients treated with quetiapine: correlations to clinical outcome and HVA, 5-HIAA, and MHPG in CSF. J Clin Psychopharmacol 30(5):496–503

    Article  CAS  PubMed  Google Scholar 

  • Nikisch G, Mathé AA, Czernik A, Eap CB, Jiménez-Vasquez P, Brawand-Amey M, Baumann P (2004) Stereoselective metabolism of citalopram in plasma and cerebrospinal fluid of depressive patients: relationship with 5-HIAA in CSF and clinical response. J Clin Psychopharmacol 24(3):283–290

    Article  CAS  PubMed  Google Scholar 

  • Nikisch G, Mathé AA, Czernik A, Thiele J, Bohner J, Eap CB, Agren H, Baumann P (2005) Long-term citalopram administration reduces responsiveness of HPA axis in patients with major depression: relationship with S-citalopram concentrations in plasma and cerebrospinal fluid (CSF) and clinical response. Psychopharmacology 181(4):751–760

    Article  CAS  PubMed  Google Scholar 

  • Nordin C, Bertilsson L (1995) Active hydroxymetabolites of antidepressants. Clin Pharmacokinet 28(1):26–40

    Article  CAS  PubMed  Google Scholar 

  • Paulzen M, Groppe S, Tauber SM, Veselinovic T, Hiemke C, Gründer G (2014) Venlafaxine and O-desmethylvenlafaxine concentrations in plasma and cerebrospinal fluid. J Clin Psychiatry accepted for publication

  • Paus E, Ml J-P, Cochard N, Eap CB, Baumann P (2004) Chirality in the new generation of antidepressants: stereoselective analysis of the enantiomers of mirtazapine, N-demethylmirtazapine, and 8-hydroxymirtazapine by LC-MS. Ther Drug Monit 26(4):366–374

    Article  CAS  PubMed  Google Scholar 

  • Rambeck B, Jürgens UH, May TW, Wolfgang Pannek H, Behne F, Ebner A, Gorji A, Straub H, Speckmann EJ, Pohlmann‐Eden B (2006) Comparison of brain extracellular fluid, brain tissue, cerebrospinal fluid, and serum concentrations of antiepileptic drugs measured intraoperatively in patients with intractable epilepsy. Epilepsia 47(4):681–694

    Article  CAS  PubMed  Google Scholar 

  • Redzic Z (2011) Molecular biology of the blood-brain and the blood-cerebrospinal fluid barriers: similarities and differences. Fluids Barriers CNS 8(3):1–25

    Google Scholar 

  • Reiber H, Felgenhauer K (1987) Protein transfer at the blood cerebrospinal fluid barrier and the quantitation of the humoral immune response within the central nervous system. Clin Chim Acta 163(3):319–328

    Article  CAS  PubMed  Google Scholar 

  • Sakaeda T, Nakamura T, Okumura K (2004) Pharmacogenetics of drug transporters and its impact on the pharmacotherapy. Curr Top Med Chem 4(13):1383–1396

    Article  Google Scholar 

  • Sathananthan GL, Gershon S, Almeida M, Spector N, Spector S (1976) Correlation between plasma and cerebrospinal levels of imipramine. Arch Gen Psychiatry 33(9):1109

    Article  CAS  PubMed  Google Scholar 

  • Schomburg R, Remane D, Fassbender K, Maurer HH, Spiegel J (2011) Doxepin concentrations in plasma and cerebrospinal fluid. J Neural Transm 118(4):641–645

    Article  CAS  PubMed  Google Scholar 

  • Shams M, Hiemke C, Härtter S (2004) Therapeutic drug monitoring of the antidepressant mirtazapine and its N-demethylated metabolite in human serum. Ther Drug Monit 26(1):78–84

    Article  CAS  PubMed  Google Scholar 

  • Smith DF, Stork BS, Wegener G, Jakobsen S, Bender D, Hln A, Jensen SB, Hansen SB, Rodell A, Rosenberg R (2007) Receptor occupancy of mirtazapine determined by PET in healthy volunteers. Psychopharmacology 195(1):131–138

    Article  CAS  PubMed  Google Scholar 

  • Timmer C, Sitsen JMA, Delbressine L (2000) Clinical pharmacokinetics of mirtazapine. Clin Pharmacokinet 38(6):461–474

    Article  CAS  PubMed  Google Scholar 

  • Voortman G, Paanakker JE (1995) Bioavailability of mirtazapine from Remeron® tablets after single and multiple oral dosing. Hum Psychopharmacol Clin Exp 10(S2):S83–S96

    Article  CAS  Google Scholar 

  • Yasuda K, Cline C, Vogel P, Onciu M, Fatima S, Sorrentino BP, Thirumaran RK, Ekins S, Urade Y, Fujimori K (2013) Drug transporters on arachnoid barrier cells contribute to the blood-cerebrospinal fluid barrier. Drug Metab Dispos 41(4):923–931

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Anette Rieger-Gies, Sandra Heller, and Gaby Stroba from the Institute of Clinical Chemistry and Laboratory Medicine at the University Medical Center at Mainz for the determination of mirtazapine and normirtazapine for this investigation. Appreciation is also given to Dr. Karsten Henkel of the Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University for collecting blood and CSF samples and Dr. Ingo Vernaleken of the Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University for his always fruitful thought-provoking impulses.

Conflict of interest

Dr. Paulzen, Dr. Groppe, Dr. Tauber and Dr. Veselinovic have no financial interests to declare.

Dr. Gründer has served as a consultant for Bristol-Myers Squibb (New York, NY, USA), Cheplapharm (Greifswald, Germany), Eli Lilly (Indianapolis, IN, USA), Forest Laboratories (New York, NY, USA), Lundbeck (Copenhagen, Denmark), Otsuka (Rockville, MD, USA), Roche (Basel, Switzerland), Servier (Paris, France), and Takeda (Osaka, Japan). He has served on the speakers’ bureau of Bristol-Myers Squibb, Eli Lilly, Gedeon Richter (Budapest, Hungary), Otsuka, Roche, and Servier. He has received grant support from Alkermes, Eli Lilly, and Roche. He is co-founder of Pharma-Image Molecular Imaging Technologies GmbH, Düsseldorf, and Brainfoods UG, Düsseldorf.

Dr. Hiemke has served as a consultant for Servier (Paris, France) and Janssen-Cilag (Beerse, Belgium). He has served on the speakers’ bureau of Bristol-Myers Squibb, Eli Lilly, Pfizer, and Servier. He is the managing director of psiac GmbH, Mainz, which provides an internet based drug interaction program for psychoactive drugs.

Authorship contributions

MP, GG, and CH participated in research design. MP, SCT, and TV conducted experiments. CH contributed analytic tools. MP and SEG performed data analysis. MP, SEG, SCT, TV, CH, and GG wrote or contributed to the writing of the manuscript.

Financial support

This work was done without financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Paulzen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paulzen, M., Gründer, G., Tauber, S.C. et al. Distribution pattern of mirtazapine and normirtazapine in blood and CSF. Psychopharmacology 232, 807–813 (2015). https://doi.org/10.1007/s00213-014-3717-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-014-3717-9

Keywords

Navigation