Skip to main content

Advertisement

Log in

Selective blockade of N-methyl-d-aspartate channels in combination with dopamine receptor antagonism induces loss of the righting reflex in mice, but not immobility

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

The selective N-methyl-d-aspartate (NMDA) channel blocker MK-801 is known to induce no loss of the righting reflex (LORR) and to stimulate catecholaminergic (CAergic) neurons in rodents, playing a crucial role in arousal.

Objectives

We examined whether MK-801 in combination with CA receptor ligands, which inhibit CAergic neuronal activities, could induce anesthesia including LORR.

Methods

All drugs were administered systemically to mice. To assess anesthesia, three different behaviors were used: loss of nociceptive response (analgesia in the free-moving state without LORR), LORR, and loss of movement in response to noxious stimulation (immobility under LORR).

Results

A very large dose of MK-801 (50 mg/kg) induced neither analgesia nor LORR. In contrast, MK-801 in combination with a small dose of the dopamine (DA) receptor antagonist haloperidol (0.2 mg/kg) dose-dependently produced LORR with a 50 % effective dose (ED50) of 1.6 (0.9–3.0; 95 % confidence limit) mg/kg, but not immobility. The α2-adrenoceptor agonist dexmedetomidine induced not only analgesia, but also immobility in animals treated with MK-801 (5 mg/kg) plus haloperidol (0.2 mg/kg), which then lost their righting reflex. The ED50 value of 0.26 (0.10–0.66) mg/kg (various doses of dexmedetomidine plus a fixed dose of MK-801 and haloperidol) for immobility was approximately three-fold larger than that of 0.09 (0.03–0.23) mg/kg (dexmedetomidine plus vehicle saline) for analgesia. This may occur, as LORR induced by MK-801 plus haloperidol inhibits the pain suppression system. The other ligands had little or no effect.

Conclusions

The DAergic stimulant actions of MK-801 may mask its LORR effects by NMDA channel blockade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aimone LD, Yaksh TL (1989) Opioid modulation of capsaicin-evoked release of substance P from rat spinal cord in vivo. Peptides 10:1127–1131

    Article  CAS  PubMed  Google Scholar 

  • Bianchi C, Franceschini J (1954) Experimental observations on Haffner ’s method for testing analgesic drugs. Br J Pharmacol 9:280–284

    CAS  Google Scholar 

  • Carter AJ (1995) Antagonists of the NMDA receptor-channel complex and motor coordination. Life Sci 57:917–929

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Shu S, Bayliss DA (2009) HCN1 channel subunits are a molecular substrate for hypnotic actions of ketamine. J Neurosci 29:600–609

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clarke PB, Reuben M (1995) Inhibition by dizocilpine (MK-801) of striatal dopamine release induced by MPTP and MPP+: possible action at the dopamine transporter. Br J Pharmacol 114:315–322

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cooper JR, Bloom FE, Roth RH (2003) Dopamine. In: Cooper JR, Bloom FE, Roth RH (eds) The biochemical basis of neuropharmacology, 8th edn. Oxford University Press, New York, pp 225–270

    Google Scholar 

  • Daniell LC (1990) The noncompetitive N-methyl-D-aspartate antagonists, MK-801, phencyclidine and ketamine, increase the potency of general anesthetics. Pharmacol Biochem Behav 36:111–115

    Article  CAS  PubMed  Google Scholar 

  • Del Arco A, Segovia G, Mora F (2008) Blockade of NMDA receptors in the prefrontal cortex increases dopamine and acetylcholine release in the nucleus accumbens and motor activity. Psychopharmacology 201:325–338

    Article  PubMed  Google Scholar 

  • Doze VA, Chen BX, Maze M (1989) Dexmedetomidine produces a hypnotic-anesthetic action in rats via activation of central alpha-2 adrenoceptors. Anesthesiology 71:75–79

    Article  CAS  PubMed  Google Scholar 

  • Dutton RC, Zhang Y, Stabernack CR, Laster MJ, Sonner JM, Eger EI II (2003) Temporal summation governs part of the minimum alveolar concentration of isoflurane anesthesia. Anesthesiology 98:1372–1377

    Article  CAS  PubMed  Google Scholar 

  • Fields HL, Heinricher MM, Mason P (1991) Neurotransmitters in nociceptive modulatory circuits. Annu Rev Neurosci 14:219–245

    Article  CAS  PubMed  Google Scholar 

  • Fishman RHB, Feigenbaum JJ, Yanai J, Klawans HL (1983) The relative importance of dopamine and norepinephrine in mediating locomotor activity. Prog Neurobiol 20:55–88

    Article  CAS  PubMed  Google Scholar 

  • Foster AC (1991) Channel blocking drugs for the NMDA receptor. In: Meldrum BS (ed) Excitatory amino acid antagonists. Blackwell Scientific Publications, Oxford, pp 164–179

    Google Scholar 

  • Franks NP (2008) General anaesthesia: from molecular targets to neuronal pathways of sleep and arousal. Nat Rev Neurosci 9:370–386

    Article  CAS  PubMed  Google Scholar 

  • Gattaz WF, Schummer B, Behrens S (1994) Effects of zotepine, haloperidol and clozapine on MK-801-induced stereotypy and locomotion in rats. J Neural Transm Gen Sect 96:227–232

    Article  CAS  PubMed  Google Scholar 

  • Gilsbach R, Röser C, Beetz N, Brede M, Hadamek K, Haubold M, Leemhuis J, Philipp M, Schneider J, Urbanski M, Szabo B, Weinshenker D, Hein L (2009) Genetic dissection of α2-adrenoceptor functions in adrenergic versus nonadrenergic cells. Mol Pharmacol 75:1160–1170

    Article  CAS  PubMed  Google Scholar 

  • Guo TZ, Jiang JY, Buttermann AE, Maze M (1996) Dexmedetomidine injection into the locus ceruleus produces antinociception. Anesthesiology 84:873–881

    Article  CAS  PubMed  Google Scholar 

  • Guyton AC, Hall JE (2006) Somatic sensations: II. Pain, headache, and thermal sensations. In: Guyton AC, Hall JE (eds) Textbook of medical physiology, 11th edn. Elsevier Saunders, Philadelphia, pp 598–609

    Google Scholar 

  • Hu FY, Hanna GM, Han W, Mardini F, Thomas SA, Wyner AJ, Kelz MB (2012) Hypnotic hypersensitivity to volatile anesthetics and dexmedetomidine in dopamine β-hydroxylase knockout mice. Anesthesiology 117:1006–1017

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hynes MD, Berkowitz BA (1983) Catecholamine mechanisms in the stimulation of mouse locomotor activity by nitrous oxide and morphine. Eur J Pharmacol 90:109–114

    Article  CAS  PubMed  Google Scholar 

  • Imperato A, Scrocco MG, Bacchi S, Angelucci L (1990) NMDA receptors and in vivo dopamine release in the nucleus accumbens and caudatus. Eur J Pharmacol 187:555–556

    Article  CAS  PubMed  Google Scholar 

  • Iravani MM, Muscat R, Kruk ZL (1999) MK-801 interaction with the 5-HT transporter: a real-time study in brain slices using fast cyclic voltammetry. Synapse 32:212–224

    Article  CAS  PubMed  Google Scholar 

  • Irifune M, Shimizu T, Nomoto M (1991) Ketamine-induced hyperlocomotion associated with alteration of presynaptic components of dopamine neurons in the nucleus accumbens of mice. Pharmacol Biochem Behav 40:399–407

    Article  CAS  PubMed  Google Scholar 

  • Irifune M, Shimizu T, Nomoto M, Fukuda T (1995) Involvement of N-methyl-D-aspartate (NMDA) receptors in noncompetitive NMDA receptor antagonist-induced hyperlocomotion in mice. Pharmacol Biochem Behav 51:291–296

    Article  CAS  PubMed  Google Scholar 

  • Irifune M, Katayama S, Takarada T, Shimizu Y, Endo C, Takata T, Morita K, Dohi T, Sato T, Kawahara M (2007) MK-801 enhances gabaculine-induced loss of the righting reflex in mice, but not immobility. Can J Anaesth 54:998–1005

    Article  PubMed  Google Scholar 

  • Iwata S, Izumi K, Shimizu T, Fukuda T (1989) Effects of repeated testing on the incidence of haloperidol-induced catalepsy in mice. Pharmacol Biochem Behav 33:705–707

    Article  CAS  PubMed  Google Scholar 

  • Jackson DM, Johansson C, Lindgren LM, Bengtsson A (1994) Dopamine receptor antagonists block amphetamine and phencyclidine-induced motor stimulation in rats. Pharmacol Biochem Behav 48:465–471

    Article  CAS  PubMed  Google Scholar 

  • Katayama S, Irifune M, Kikuchi N, Takarada T, Shimizu Y, Endo C, Takata T, Dohi T, Sato T, Kawahara M (2007) Increased γ-aminobutyric acid levels in mouse brain induce loss of righting reflex, but not immobility, in response to noxious stimulation. Anesth Analg 104:1422–1429

    Article  CAS  PubMed  Google Scholar 

  • Koblin DD (2000) Mechanisms of action. In: Miller RD (ed) Anesthesia, 5th edn. Churchill Livingstone, Philadelphia, pp 48–73

    Google Scholar 

  • Kovacic P, Somanathan R (2010) Clinical physiology and mechanism of dizocilpine (MK-801): electron transfer, radicals, redox metabolites and bioactivity. Oxidative Med Cell Longev 3:13–22

    Article  Google Scholar 

  • Lapin IP, Rogawski MA (1995) Effects of D1 and D2 dopamine receptor antagonists and catecholamine depleting agents on the locomotor stimulation induced by dizocilpine in mice. Behav Brain Res 70:145–151

    Article  CAS  PubMed  Google Scholar 

  • Masuzawa M, Nakao S, Miyamoto E, Yamada M, Murao K, Nishi K, Shingu K (2003) Pentobarbital inhibits ketamine-induced dopamine release in the rat nucleus accumbens: a microdialysis study. Anesth Analg 96:148–152

    CAS  PubMed  Google Scholar 

  • Mathé JM, Nomikos GG, Hildebrand BE, Hertel P, Svensson TH (1996) Prazosin inhibits MK-801-induced hyperlocomotion and dopamine release in the nucleus accumbens. Eur J Pharmacol 309:1–11

    Article  PubMed  Google Scholar 

  • Mathé JM, Nomikos GG, Blakeman KH, Svensson TH (1999) Differential actions of dizocilpine (MK-801) on the mesolimbic and mesocortical dopamine systems: role of neuronal activity. Neuropharmacology 38:121–128

    Article  PubMed  Google Scholar 

  • O'Brien CP (2011) Drug addiction. In: Brunton LL, Chabner BA, Knollmann BC (eds) Goodman & Gilman’s the pharmacological basis of therapeutics, 12th edn. McGraw-Hill, New York, pp 649–668

    Google Scholar 

  • Patel PM, Patel HH, Roth DM (2011) General anesthetics and therapeutic gases. In: Brunton LL, Chabner BA, Knollmann BC (eds) Goodman & Gilman’s the pharmacological basis of therapeutics, 12th edn. McGraw-Hill, New York, pp 527–564

    Google Scholar 

  • Ramoa AS, Alkondon M, Aracava Y, Irons J, Lunt GG, Deshpande SS, Wonnacott S, Aronstam RS, Albuquerque EX (1990) The anticonvulsant MK-801 interacts with peripheral and central nicotinic acetylcholine receptor ion channels. J Pharmacol Exp Ther 254:71–82

    CAS  PubMed  Google Scholar 

  • Sakamoto S, Nakao S, Masuzawa M, Inada T, Maze M, Franks NP, Shingu K (2006) The differential effects of nitrous oxide and xenon on extracellular dopamine levels in the rat nucleus accumbens: a microdialysis study. Anesth Analg 103:1459–1463

    Article  CAS  PubMed  Google Scholar 

  • Sinner B, Graf BM (2008) Ketamine. In: Schüttler J, Schwilden H (eds) Modern anesthetics. Springer, Berlin, pp 313–333

    Chapter  Google Scholar 

  • Spyraki C, Fibiger HC (1982) Clonidine-induced sedation in rats: evidence for mediation by postsynaptic α2-adrenoceptors. J Neural Transm 54:153–163

    Article  CAS  PubMed  Google Scholar 

  • Takano M, Takano Y, Yaksh TL (1993) Release of calcitonin gene-related peptide (CGRP), substance P (SP), and vasoactive intestinal polypeptide (VIP) from rat spinal cord: modulation by α2 agonists. Peptides 14:371–378

    Article  CAS  PubMed  Google Scholar 

  • Taylor NE, Chemali JJ, Brown EN, Solt K (2013) Activation of D1 dopamine receptors induces emergence from isoflurane general anesthesia. Anesthesiology 118:30–39

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Westfall TC, Westfall DP (2011) Adrenergic agonists and antagonists. In: Brunton LL, Chabner BA, Knollmann BC (eds) Goodman & Gilman’s the pharmacological basis of therapeutics, 12th edn. McGraw-Hill, New York, pp 277–333

    Google Scholar 

  • Woods JH, Koek W, France CP, Moerschbaecher JM (1991) Behavioural effects of NMDA antagonists. In: Meldrum BS (ed) Excitatory amino acid antagonists. Blackwell Scientific Publications, Oxford, pp 237–264

    Google Scholar 

  • Yan Q-S, Reith MEA, Jobe PC, Dailey JW (1997) Dizocilpine (MK-801) increases not only dopamine but also serotonin and norepinephrine transmissions in the nucleus accumbens as measured by microdialysis in freely moving rats. Brain Res 765:149–158

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by Grant-in-Aid No. 18592037 for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan. We thank Medical English Service Corp. (Kyoto, Japan) for English language editing.

Conflict of interest

Authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Irifune.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kikuchi, N., Irifune, M., Shimizu, Y. et al. Selective blockade of N-methyl-d-aspartate channels in combination with dopamine receptor antagonism induces loss of the righting reflex in mice, but not immobility. Psychopharmacology 232, 39–46 (2015). https://doi.org/10.1007/s00213-014-3634-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-014-3634-y

Keywords

Navigation