Skip to main content
Log in

Corners and stable optimized domain decomposition methods for the Helmholtz problem

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We construct a new Absorbing Boundary Condition (ABC) adapted to solving the Helmholtz equation in polygonal domains in dimension two. Quasi-continuity relations are obtained at the corners of the polygonal boundary. This ABC is then used in the context of domain decomposition where various stable algorithms are constructed and analysed. Next, the operator of this ABC is adapted to obtain a transmission operator for the Domain Decomposition Method (DDM) that is well suited for broken line interfaces. For each algorithm, we show the decrease of an adapted quadratic pseudo-energy written on the skeleton of the mesh decomposition, which establishes the stability of these methods. Implementation within a finite element solver (GMSH/GetDP) and numerical tests illustrate the theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. http://gmsh.info/, commit number 418deb961, version 4.6.0, May 7th 2020.

  2. http://getdp.info/, version 3.3.0.

  3. http://onelab.info/GetDDM/.

  4. https://gitlab.onelab.info/doc/models/-/tree/master/DDM-Corner-Helmholtz-2D, commit number acc6a9f9, Septembre 8th 2021.

References

  1. Amestoy, P., Duff, I.S., Koster, J., L’Excellent, J.-Y.: A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl. 23(1), 15–41 (2001)

  2. Bamberger, A., Joly, P., Roberts, J.E.: Second-order absorbing boundary conditions for the wave equation: a solution for the corner problem. SIAM J. Numer. Anal. 27(2), 323–352 (1990)

    Article  MathSciNet  Google Scholar 

  3. Benamou, J.-D., Desprès, B.: A domain decomposition method for the Helmholtz equation and related optimal control problems. J. Comput. Phys. 136(1), 68–82 (1997)

    Article  MathSciNet  Google Scholar 

  4. Bendali, A., Boubendir, Y.: Non-overlapping domain decomposition method for a nodal finite element method. Numer. Math. 103(4), 515–537 (2006)

    Article  MathSciNet  Google Scholar 

  5. Bonnet-Ben Dhia, A.-S., Chesnel, L., Nazarov, S.: Perfect transmission invisibility for waveguides with sound hard walls. J. de Mathématiques Pures et Appliquées 111, 79–105 (2018)

  6. Boubendir, Y., Antoine, X., Geuzaine, C.: A quasi-optimal non-overlapping domain decomposition algorithm for the Helmholtz equation. J. Comput. Phys. 231(2), 262–280 (2012)

    Article  MathSciNet  Google Scholar 

  7. Boubendir, Y., Bendali, A., Fares, M.B.: Coupling of a non-overlapping domain decomposition method for a nodal finite element method with a boundary element method. Int. J. Numer. Methods Eng. 73(11), 1624–1650 (2008)

    Article  MathSciNet  Google Scholar 

  8. Chniti, C., Nataf, F., Nier, F.: Improved interface conditions for 2D domain decomposition with corners: numerical applications. J. Sci. Comput. 38(2), 207–228 (2009)

    Article  MathSciNet  Google Scholar 

  9. Claeys, X.: A new variant of the optimised Schwarz method for arbitrary non-overlapping subdomain partitions (2019)

  10. Després, B.: Domain decomposition method and the Helmholtz problem. In: Cohen, G., Halpern, L., Joly, P. (eds.) Mathematical and Numerical Aspects of Wave Propagation Phenomena (Strasbourg, 1991), pp. 44–52. SIAM, Philadelphia (1991)

  11. Després, B., Nicolopoulos, A., Thierry, B.: Domain Decomposition Method for Helmholtz Equation with Corner Correction (Version 1) [Data set]. Zenodo (2021). https://doi.org/10.5281/zenodo.5493762

  12. Dohrmann, C.R., Klawonn, A., Widlund, O.B.: Extending theory for domain decomposition algorithms to irregular subdomains. In: Langer, U., Discacciati, M., Keyes, D.E., Widlund, O.B., Zulehner, W. (eds.) Domain Decomposition Methods in Science and Engineering XVII, Volume 60 of Lecture Notes in Computer Science and Engineering, pp. 255–261. Springer, Berlin, (2008)

  13. Dolean, V., Jolivet, P., Nataf, F.: An Introduction to Domain Decomposition Methods. Society for Industrial and Applied Mathematics, Philadelphia (2015)

    Book  Google Scholar 

  14. Dular, P., Geuzaine, C.: GetDP reference manual: the documentation for GetDP, a general environment for the treatment of discrete problems. http://getdp.info

  15. Engquist, B., Majda, A.: Absorbing boundary conditions for the numerical simulation of waves. Math. Comput. 31(139), 629–651 (1977)

    Article  MathSciNet  Google Scholar 

  16. Farhat, C., Avery, P., Tezaur, R., Li, J.: FETI-DPH: a dual-primal domain decomposition method for acoustic scattering. J. Comput. Acoust. 13(3), 499–524 (2005)

    Article  MathSciNet  Google Scholar 

  17. Gander, M.J.: Optimized Schwarz methods. SIAM J. Numer. Anal. 44(2), 699–731 (2006)

    Article  MathSciNet  Google Scholar 

  18. Gander, M.J., Kwok, F.: Best Robin parameters for optimized Schwarz methods at cross points. SIAM J. Sci. Comput. 34(4), A1849–A1879 (2012)

    Article  MathSciNet  Google Scholar 

  19. Gander, M.J., Kwok, F.: On the applicability of Lions’ energy estimates in the analysis of discrete optimized Schwarz methods with cross points. In: Domain Decomposition Methods in Science and Engineering XX, Volume 91 of Lecture Notes Computer Science and Engineering, pp. 475–483. Springer, Heidelberg (2013)

  20. Gander, M.J., Magoulès, F., Nataf, F.: Optimized Schwarz methods without overlap for the Helmholtz equation. SIAM J. Sci. Comput. 24(1), 38–60 (2002)

    Article  MathSciNet  Google Scholar 

  21. Gander, M.J., Santugini, K.: Cross-points in domain decomposition methods with a finite element discretization. Electron. Trans. Numer. Anal. 45, 219–240 (2016)

    MathSciNet  MATH  Google Scholar 

  22. Geuzaine, C., Remacle, J.-F.: Gmsh: a 3-D finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 79(11), 1309–1331 (2009)

    Article  MathSciNet  Google Scholar 

  23. Gordon, D., Gordon, R., Turkel, E.: Compact high order schemes with gradient-direction derivatives for absorbing boundary conditions. J. Comput. Phys. 297, 295–315 (2015)

    Article  MathSciNet  Google Scholar 

  24. Halpern, L., Lafitte, O.: Dirichlet to Neumann map for domains with corners and approximate boundary conditions. J. Comput. Appl. Math. 204(2), 505–514 (2007)

    Article  MathSciNet  Google Scholar 

  25. Joly, P., Lohrengel, S., Vacus, O.: Un résultat d’existence et d’unicité pour l’équation de Helmholtz avec conditions aux limites absorbantes d’ordre 2. C. R. Acad. Sci. Paris Sér. I Math. 329(3), 193–198, (1999)

  26. Kechroud, R., Antoine, X., Soulaïmani, A.: Numerical accuracy of a Padé-type non-reflecting boundary condition for the finite element solution of acoustic scattering problems at high-frequency. Int. J. Numer. Methods Eng. 64(10), 1275–1302 (2005)

  27. Lecouvez, M., Stupfel, B., Joly, P., Collino, F.: Quasi-local transmission conditions for non-overlapping domain decomposition methods for the Helmholtz equation. Comptes Rendus Physique 15(5), 403–414, (2014). Electromagnetism/Électromagnétisme

  28. Loisel, S.: Condition number estimates for the nonoverlapping optimized Schwarz method and the 2-Lagrange multiplier method for general domains and cross points. SIAM J. Numer. Anal. 51(6), 3062–3083 (2013)

    Article  MathSciNet  Google Scholar 

  29. Modave, A., Antoine, X., Geuzaine, C.: An efficient domain decomposition method with cross-point treatment for Helmholtz problems. In: CSMA 2019—14e Colloque National en Calcul des Structures, Giens (Var), France, (May 2019)

  30. Modave, A., Geuzaine, C., Antoine, X.: Corner treatments for high-order local absorbing boundary conditions in high-frequency acoustic scattering. J. Comput. Phys. 401, 109029 (2020)

    Article  MathSciNet  Google Scholar 

  31. Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7(3), 856–869 (1986)

    Article  MathSciNet  Google Scholar 

  32. Thierry, B., Vion, A., Tournier, S., El Bouajaji, M., Colignon, D., Marsic, N., Antoine, X., Geuzaine, C.: Getddm: an open framework for testing optimized Schwarz methods for time-harmonic wave problems. Comput. Phys. Commun. 203, 309–330 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Nicolopoulos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Geometric interpretation of the ABC

To provide a geometric intuition of the different terms of the bilinear form a from (17), we consider the simple situation where the domain is a K sided regular polygon approximating the disc \({\mathcal {D}}=\{x^2+y^2\le R^2\}\) from the interior as K goes to infinity. The corners of the polygon are denoted \(A_k=R(\cos \frac{2k\pi }{K},\sin \frac{2k\pi }{K})\) with k defined modulo K. The middle of the edges are the \(A_{k+1/2}=R(\cos \frac{(2k+1)\pi }{K},\sin \frac{(2k+1)\pi }{K})\). With our convention, see Fig. 2, the interior angle is \(\theta _K=\frac{2\pi }{K}-\pi \in (-\pi ,0)\). The arclength between two successive corners is \(\ell _K=\frac{2\pi }{K}R\).

Let \(\varphi \) and \(\psi \) be two regular functions defined on the circle \(\partial {\mathcal {D}}=\{x^2+y^2=R^2\}\). First, the Hermitian part of a, defined on the first line of (17), is a simple broken approximation of the integral

$$\begin{aligned} {\mathcal {I}}_1(\varphi ,\psi ) := \int _{\partial {\mathcal {D}}} \left( \varphi (s)\overline{\psi (s)}+\frac{1}{2\omega ^2}\varphi '(s)\overline{\psi '(s)}\right) ds, \end{aligned}$$

where s is the curvilinear abscissa. Consider now the anti-Hermitian part of a, defined on the second line of (17). We study the two quantities

$$\begin{aligned} {\mathcal {A}}_K&:=\sum _k \cos \left( \frac{\theta _K}{2}\right) (\varphi (A_{k+1/2})+\varphi (A_{k-1/2}))\overline{(\psi (A_{k+1/2})+\psi (A_{k-1/2}))},\\ {\mathcal {B}}_K&:=\sum _k \frac{\cos \left( {\theta _K}\right) }{\cos \left( \frac{\theta _K}{2}\right) }(\varphi (A_{k+1/2})-\varphi (A_{k-1/2}))\overline{(\psi (A_{k+1/2})-\psi (A_{k-1/2}))}. \end{aligned}$$

Lemma 11

As \(K\rightarrow \infty \), one has \({\mathcal {A}}_K\rightarrow {\mathcal {I}}_2(\varphi ,\psi ):= \frac{2}{R}\int _{\partial {\mathcal {D}}}\varphi (s)\overline{\psi (s)}ds\).

Proof

For large K, \(\cos \left( \frac{\theta _K}{2}\right) \sim \frac{\ell _K}{2R}\). Therefore \( {\mathcal {A}}_K= \sum _k \frac{\ell _K}{2R} 2\varphi (A_k)\overline{2\psi (A_k)}+\text {high order terms}\). One recognizes a Riemann sum, and passing to the limit yields the claim. \(\square \)

Lemma 12

As \(K\rightarrow \infty \), one has \({\mathcal {B}}_K\rightarrow {\mathcal {I}}_3(\varphi ,\psi ):= -2R\int _{\partial {\mathcal {D}}}\varphi '(s)\overline{\psi '(s)}ds\).

Proof

For large K, \(\frac{\cos \theta _K}{\cos \left( \frac{\theta _K}{2}\right) }\sim \frac{-2R}{\ell _K}\). Therefore \( {\mathcal {B}}_K= \sum _k \frac{-2R}{\ell _K} \ell _K\varphi '(A_k)\overline{\ell _K\psi '(A_k)}+\text {high order terms}\). Again, passing to the limit yields the claim. \(\square \)

The sesquilinear form \(\varphi ,\psi \mapsto a(\varphi ,\psi )\) is thus an approximation of the sesquilinear form

$$\begin{aligned} {{\widetilde{a}}}(\varphi ,\psi ):={\mathcal {I}}_1(\varphi ,\psi )-\frac{i}{4\omega }\left( {\mathcal {I}}_2(\varphi ,\psi )+{\mathcal {I}}_3(\varphi ,\psi )\right) , \end{aligned}$$

where the Hermitian part \({\mathcal {I}}_1\) is independent of the curvature radius R, and where the anti-Hermitian part \(-\frac{i}{4\omega }({\mathcal {I}}_2+{\mathcal {I}}_3)\) depends on the curvature radius via terms proportional to R and 1/R. Similarly, the sesquilinear form \(\varphi ,\psi \mapsto a^*(\varphi ,\psi )\) approximates the sesquilinear form \( {{\widetilde{a}}}^*(\varphi ,\psi ):={\mathcal {I}}_1(\varphi ,\psi )+\frac{i}{4\omega }\left( {\mathcal {I}}_2(\varphi ,\psi )+{\mathcal {I}}_3(\varphi ,\psi )\right) \). In classical planar differential geometry, a smooth curve \(\varGamma \) locally separates the domain into two regions \(\varOmega _\pm \). The curvature radius R of \(\varGamma \) seen from \(\varOmega _+\) is the opposite of the curvature radius \(-R\) of \(\varGamma \) seen from \(\varOmega _-\). Therefore, another possible interpretation of the difference between \({{\widetilde{a}}}\) and \({{\widetilde{a}}}^*\) is that they correspond to the same curve \(\varGamma \) seen from one side or the other.

Remark 7

Considering Remark 1, the same interpretation holds for T and \(T^*\): they account for the curvature radius, and a change of sign of the curvature radius changes T in \(T^*\) and reciprocally.

The ABC associated to \({{\widetilde{a}}}(\varphi ,\psi )=(u,\psi )_{L^2(\varGamma )}\), noticing that \(\varphi \simeq ({\mathbf {i}}\omega )^{-1}\partial _{{\mathbf {n}}}u\), writes in its strong form

$$\begin{aligned} \left( 1-\frac{1}{2\omega ^2}\partial _{ss} - \frac{{\mathbf {i}}}{4\omega }\left( \frac{2}{R}+2R\partial _{ss}\right) \right) \partial _{{\mathbf {n}}}u- {\mathbf {i}}\omega u=0. \end{aligned}$$

In polar coordinates and on the border of the disk \({\mathcal {D}}\), the normal derivative is the derivative along r (\(\varphi \simeq ({\mathbf {i}}\omega )^{-1}\partial _{r}u\)) and the curvilinear derivative is given by \(\partial _{ss} = \frac{1}{R^2}\partial _{\theta \theta }\). Hence the following strong form of the ABC in polar coordinates:

$$\begin{aligned} \left( 1-\frac{1}{2R^2\omega ^2}\partial _{\theta \theta } - \frac{{\mathbf {i}}}{2\omega R}\left( 1+\partial _{\theta \theta }\right) \right) \partial _{r}u- {\mathbf {i}}\omega u=0. \end{aligned}$$

When the radius of the disk R goes to infinity, the border of \({\mathcal {D}}\) tends to be (locally) straight and the ABC converges towards the classical low order ABC \( \partial _{r}u- {\mathbf {i}}\omega u=0\).

Subdomains and unknowns decoupled: DDM-3

In this appendix, we modify algorithm DDM-2 to decouple (22) from (23), at the price of introducing a new auxiliary unknown on each edge \(\varGamma _k^i\). This unknown, denoted \(\psi _{i,k}\), represents the Dirichlet trace of \(u_i\) on \(\varGamma _k^i\). The interest is that \(u_i^{p+1}\) can be obtained by solving a classical Helmholtz boundary value problem, where the boundary condition involves \((\varphi _{i,k}^{p})_k\) and \((\psi _{i,k}^{p})_k\) at the previous iteration index p.

Initialize \(u_i^0\in H^1(\varOmega _{i})\) with square integrable normal derivatives on each subdomain, and \((\varphi _{i,k}^0)_k\in \oplus _k H^1(\varGamma _k^i)\), \((\psi _{i,k}^0)_k\in \oplus _k L^2(\varGamma _k^i)\) on the exterior boundary of each subdomain. For \(p=0,1,\ldots \), solve for each subdomain

$$\begin{aligned} \left\{ \begin{array}{ll} (-\varDelta - \omega ^2)u_i^{p+1}= f &{}\quad \text {in }\varOmega _{i} ,\\ \displaystyle \left( \partial _{{\mathbf {n}}^i}- {\mathbf {i}}\omega \right) u_i^{p+1} =\displaystyle - \left( \partial _{{\mathbf {n}}^j}+ {\mathbf {i}}\omega \right) u_j^{p} &{}\quad \text {on }\partial \varOmega _{i} \cap \partial \varOmega _{j},\forall j\ne i, \\ \displaystyle \left( \partial _{{\mathbf {n}}^i} - {\mathbf {i}}\omega \right) u_i^{p+1} = \displaystyle {\mathbf {i}}\omega \left( \varphi _{i,k}^{p} - \psi _{i,k}^{p} \right) &{}\quad \text {on }\varGamma _k^i, \forall k, \end{array} \right. \end{aligned}$$
(32)

and for each edge

$$\begin{aligned} \left\{ \begin{array}{ll} \displaystyle \left( 1- \frac{1}{2\omega ^2} \partial _{{\mathbf {t}}_k{\mathbf {t}}_k} \right) \varphi _{i,k}^{p+1}({\mathbf {x}})=\psi _{i,k}^{p+1}({\mathbf {x}}), &{}\quad {\mathbf {x}}\in \varGamma _k^i,\\ \displaystyle \varphi _{i,k}^{p+1}({\mathbf {x}})+\psi _{i,k}^{p+1}({\mathbf {x}})= \frac{1}{{\mathbf {i}}\omega }\frac{\partial u_i^{p}}{\partial {\mathbf {n}}^i}({\mathbf {x}})+u_i^p({\mathbf {x}}), &{}\quad {\mathbf {x}}\in \varGamma _k^i,\\ \\ \displaystyle \left( \left( 1+ \frac{{\mathbf {i}}\beta }{\omega } \frac{ \cos \left( \frac{\theta _{k\ell }}{2}\right) }{\cos \theta _{k\ell }}\right) \frac{\partial \varphi _{i,k}^{p+1}}{\partial \varvec{\tau }_k} +\left( \beta - {\mathbf {i}}\omega \cos \left( \frac{\theta _{k\ell }}{2}\right) \right) \varphi _{i,k}^{p+1} \right) ({\mathbf {A}}_{k\ell }^{ij}) &{}\\ \displaystyle \quad = \left( \left( -1+ \frac{{\mathbf {i}}\beta }{\omega } \frac{ \cos \left( \frac{\theta _{k\ell }}{2}\right) }{\cos \theta _{k\ell }}\right) \frac{\partial \varphi _{j,\ell }^{p}}{\partial \varvec{\tau }_\ell } +\left( \beta + {\mathbf {i}}\omega \cos \left( \frac{\theta _{k\ell }}{2}\right) \right) \varphi _{j,\ell }^{p} \right) ({\mathbf {A}}_{k\ell }^{ij}), &{}\quad {\mathbf {A}}_{k\ell }^{ij}\in {\mathcal {C}}_{k}^i,\\ \\ \left( {\mathbf {i}}\omega \varphi _{i,k}^{p+1} + \partial _{\varvec{\tau }_k}\varphi _{i,k}^{p+1}\right) ({\mathbf {B}}_k^{ij}) =\left( {\mathbf {i}}\omega \varphi _{j,k}^p-\partial _{\varvec{\tau }_k}\varphi _{j,k}^p\right) ({\mathbf {B}}_k^{ij}), &{}\quad {\mathbf {B}}_k^{ij}\in {\mathcal {F}}_{k}^i, \end{array} \right. \nonumber \\ \end{aligned}$$
(33)

with the same \(\beta \) as before to remove the singularity, see Remark 3. We now show the algorithm is endowed with a decreasing energy for \(f=0\). Define

$$\begin{aligned} G^p&:=\overset{N_{\text {dom}}-1}{\underset{i=0}{\sum }} \left( \int _{\partial \varOmega _{i}\setminus \varGamma } \left| \left( \partial _{{\mathbf {n}}^i}-{\mathbf {i}}\omega \right) u_i^{p} \right| ^2\mathop {}\!\mathrm {d}\gamma + \overset{K-1}{\underset{k=0}{\sum }}\int _{\varGamma _k^i}\omega ^2\left| \varphi _{i,k}^p+\psi _{i,k}^p\right| ^2\mathop {}\!\mathrm {d}\gamma \right. \\&\quad +\, \overset{K-1}{\sum _{\underset{{{\mathbf {A}}_{k\ell }^{ij}\in {\mathcal {C}}_{k}^i}}{k=0}}} \frac{1}{2|\omega |\sin ^2\left( \frac{\theta _{k\ell }}{2}\right) } \left| \left( 1+ \frac{{\mathbf {i}}\beta }{\omega } \frac{ \cos \left( \frac{\theta _{k\ell }}{2}\right) }{\cos \theta _{k\ell }}\right) \frac{\partial \varphi _{i,k}^p}{\partial \varvec{\tau }_k} \right. \\&\quad \left. +\, \left( \beta -{\mathbf {i}}\omega \cos \left( \frac{\theta _{k\ell }}{2}\right) \right) \varphi _{i,k}^{p} \right| ^2 ({\mathbf {A}}_{k\ell }^{ij})\\&\quad +\, \overset{K-1}{\sum _{\underset{{\mathbf {B}}_k^{ij}\in {\mathcal {F}}_{k}^i}{k=0}}}\left. \frac{1}{2\omega } \left| \omega \varphi _{i,k}^p+\partial _{\varvec{\tau }_k}\varphi _{i,k}^p \right| ^2 ({\mathbf {B}}_k^{ij})\right) = F^p+\overset{N_{\text {dom}}-1}{\underset{i=0}{\sum }} \overset{K-1}{\underset{k=0}{\sum }}\int _{\varGamma _k^i}\omega ^2\left| \varphi _{i,k}^p+\psi _{i,k}^p\right| ^2\mathop {}\!\mathrm {d}\gamma . \end{aligned}$$

Lemma 13

The algorithm (32)–(33) is stable. For \(f=0\), it has decreasing energy

$$\begin{aligned}G^{p+1} = G^p -2\overset{N_{\text {dom}}-1}{\underset{j=0}{\sum }} \overset{K-1}{\underset{\ell =0}{\sum }}\int _{\varGamma _{\ell }^j}\left( 2\omega ^2|\varphi _{j,\ell }^p|^2+|\partial _{{\mathbf {t}}_\ell }\varphi _{j,\ell }^p|^2\right) \mathop {}\!\mathrm {d}\gamma .\end{aligned}$$

Proof

Similar computations to the ones of the proof of Lemma 8 give

$$\begin{aligned} G^{p+1}=G^p-4{{\,\mathrm{Re}\,}}\overset{N_{\text {dom}}-1}{\underset{j=0}{\sum }} \overset{K-1}{\underset{\ell =0}{\sum }}\int _{\varGamma _{\ell }^j}\omega ^2\varphi _{j,\ell }^p\overline{\psi _{j,\ell }^p}\mathop {}\!\mathrm {d}\gamma -2{{\,\mathrm{Re}\,}}\overset{N_{\text {dom}}-1}{\underset{j=0}{\sum }} \overset{K-1}{\underset{\underset{{\mathbf {A}}\in {\mathcal {C}}_{\ell }^j\cup {\mathcal {F}}_{\ell }^j}{\ell =0}}{\sum }}\frac{\partial \varphi _{j,\ell }^p}{\partial \varvec{\tau }_\ell }({\mathbf {A}})\overline{\varphi _{j,\ell }^p}({\mathbf {A}}). \end{aligned}$$

Integrating the first equation of system (33) at iteration p on \(\varGamma _{\ell }^j\) against \(\varphi _{j,\ell }^p\) and taking the sum over all subdomain and edge indices j and \(\ell \) gives the result:

$$\begin{aligned}&\overset{N_{\text {dom}}-1}{\underset{j=0}{\sum }} \overset{K-1}{\underset{\ell =0}{\sum }}\int \limits _{\varGamma _{\ell }^j}\left( |\varphi _{j,\ell }^p|^2+\frac{1}{2\omega ^2}\left| \frac{\partial \varphi _{j,\ell }^p}{\partial {\mathbf {t}}_\ell }\right| ^2\right) \mathop {}\!\mathrm {d}\gamma \\&\qquad -\, \frac{1}{2\omega ^2}\overset{N_{\text {dom}}-1}{\underset{j=0}{\sum }}\!\! \overset{K-1}{\underset{\underset{{\mathbf {A}}\in {\mathcal {C}}_{\ell }^j\cup {\mathcal {F}}_{\ell }^j}{\ell =0}}{\sum }} \frac{\partial \varphi _{j,\ell }^p}{\partial \varvec{\tau }_\ell }({\mathbf {A}})\overline{\varphi _{j,\ell }^p}({\mathbf {A}})\\&\quad =\!\!\!\!\overset{N_{\text {dom}}-1}{\underset{j=0}{\sum }} \overset{K-1}{\underset{\ell =0}{\sum }}\int \limits _{\varGamma _{\ell }^j}\psi _{j,\ell }^p\overline{\varphi _{j,\ell }^p}\mathop {}\!\mathrm {d}\gamma . \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Després, B., Nicolopoulos, A. & Thierry, B. Corners and stable optimized domain decomposition methods for the Helmholtz problem. Numer. Math. 149, 779–818 (2021). https://doi.org/10.1007/s00211-021-01251-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-021-01251-2

Mathematics Subject Classification

Navigation