Skip to main content
Log in

Convergence analysis of asymptotic preserving schemes for strongly magnetized plasmas

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

The present paper is devoted to the convergence analysis of a class of asymptotic preserving particle schemes (Filbet and Rodrigues in SIAM J. Numer. Anal. 54(2):1120–1146, 2016) for the Vlasov equation with a strong external magnetic field. In this regime, classical Particle-in-Cell methods are subject to quite restrictive stability constraints on the time and space steps, due to the small Larmor radius and plasma frequency. The asymptotic preserving discretization that we are going to study removes such a constraint while capturing the large-scale dynamics, even when the discretization (in time and space) is too coarse to capture fastest scales. Our error bounds are explicit regarding the discretization, stiffness parameter, initial data and time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Note that the definition of \(\varvec{z}_\varepsilon \) differs from the one in [14] only by a scaling of \(\varepsilon \).

  2. By definition \(t_0=0\) if \(\varvec{z}_\varepsilon \) does not vanish.

References

  1. Birdsall, C.K., Langdon, A.B.: Plasma Physics via Computer Simulation, Series in Plasma Physics. Taylor & Francis, New York (2005)

    Google Scholar 

  2. Boscarino, S., Filbet, F., Russo, G.: High order semi-implicit schemes for time dependent partial differential equations. J. Sci. Comput. 68, 975–1001 (2016)

    Article  MathSciNet  Google Scholar 

  3. Brizard, A.J., Hahm, T.S.: Foundations of nonlinear gyrokinetic theory. Rev. Mod. Phys. 79, 421–468 (2007)

    Article  MathSciNet  Google Scholar 

  4. Chartier, P., Crouseilles, N., Lemou, M., Méhats, F., Zhao, X.: Uniformly accurate methods for Vlasov equations with non-homogeneous strong magnetic field. Math. Comput. 88, 2697–2736 (2019)

    Article  MathSciNet  Google Scholar 

  5. Chartier, P., Crouseilles, N., Zhao, X.: Numerical methods for the two-dimensional Vlasov–Poisson equation in the finite Larmor radius approximation regime. J. Comput. Phys. 375, 619–640 (2018)

    Article  MathSciNet  Google Scholar 

  6. Crouseilles, N., Frénod, E., Hirstoaga, S.A., Mouton, A.: Two-scale macro-micro decomposition of the Vlasov equation with a strong magnetic field. Math. Models Methods Appl. Sci. 23, 1527–1559 (2013)

    Article  MathSciNet  Google Scholar 

  7. Crouseilles, N., Hirstoaga, S.A., Zhao, X.: Multiscale particle-in-cell methods and comparisons for the long-time two-dimensional Vlasov–Poisson equation with strong magnetic field. Comput. Phys. Commun. 222, 136–151 (2018)

    Article  MathSciNet  Google Scholar 

  8. Crouseilles, N., Lemou, M., Méhats, F.: Asymptotic preserving schemes for highly oscillatory Vlasov–Poisson equations. J. Comput. Phys. 248, 287–308 (2013)

    Article  MathSciNet  Google Scholar 

  9. Crouseilles, N., Lemou, M., Méhats, F., Zhao, X.: Uniformly accurate forward semi-Lagrangian methods for highly oscillatory Vlasov–Poisson equations. Multiscale Model. Simul. 15, 723–744 (2017)

    Article  MathSciNet  Google Scholar 

  10. Crouseilles, N., Lemou, M., Méhats, F., Zhao, X.: Uniformly accurate particle-in-cell method for the long time solution of the two-dimensional Vlasov–Poisson equation with uniform strong magnetic field. J. Comput. Phys. 346, 172–190 (2017)

    Article  MathSciNet  Google Scholar 

  11. Degond, P., Filbet, F.: On the asymptotic limit of the three dimensional Vlasov–Poisson system for large magnetic field: formal derivation. J. Stat. Phys. 165, 765–784 (2016)

    Article  MathSciNet  Google Scholar 

  12. Duclous, R., Dubroca, B., Filbet, F., Tikhonchuk, V.: High order resolution of the Maxwell–Fokker–Planck–Landau model intended for ICF applications. J. Comput. Phys. 228, 5072–5100 (2009)

    Article  MathSciNet  Google Scholar 

  13. Filbet, F., Prouveur, C.: High order time discretization for backward semi-lagrangian methods. J. Comput. Appl. Math. 303, 171–188 (2016)

    Article  MathSciNet  Google Scholar 

  14. Filbet, F., Rodrigues, L.M.: Asymptotically stable particle-in-cell methods for the Vlasov–Poisson system with a strong external magnetic field. SIAM J. Numer. Anal. 54, 1120–1146 (2016)

    Article  MathSciNet  Google Scholar 

  15. Filbet, F., Rodrigues, L.M.: Asymptotically preserving particle-in-cell methods for inhomogeneous strongly magnetized plasmas. SIAM J. Numer. Anal. 55, 2416–2443 (2017)

    Article  MathSciNet  Google Scholar 

  16. Filbet, F., Rodrigues, L.M.: Asymptotics of the three-dimensional Vlasov equation in the large magnetic field limit. J. Éc. Polytech. Math. 7, 1009–1067 (2020)

    Article  MathSciNet  Google Scholar 

  17. Filbet, F., Sonnendrücker, E.: Modeling and numerical simulation of space charge dominated beams in the paraxial approximation. Math. Models Methods Appl. Sci. 16, 763–791 (2006)

    Article  MathSciNet  Google Scholar 

  18. Filbet, F., Yang, C.: Numerical simulations to the Vlasov–Poisson system with a strong magnetic field, arXiv preprint arXiv:1805.10888 (2018)

  19. Frénod, E., Hirstoaga, S.A., Lutz, M., Sonnendrücker, E.: Long time behaviour of an exponential integrator for a Vlasov–Poisson system with strong magnetic field. Commun. Comput. Phys. 18, 263–296 (2015)

    Article  MathSciNet  Google Scholar 

  20. Frénod, E., Hirstoaga, S.A., Sonnendrücker, E.: An exponential integrator for a highly oscillatory Vlasov equation. Discrete Contin. Dyn. Syst. Ser. S 8, 169–183 (2015)

    MathSciNet  MATH  Google Scholar 

  21. Frénod, E., Sonnendrücker, É.: Homogenization of the Vlasov equation and of the Vlasov–Poisson system with a strong external magnetic field. Asymptotic Anal. 18, 193–213 (1998)

    MathSciNet  MATH  Google Scholar 

  22. Frénod, E., Sonnendrücker, É.: Long time behavior of the two-dimensional Vlasov equation with a strong external magnetic field. Math. Mod. Meth. Appl. S. 10, 539–553 (2000)

    Article  MathSciNet  Google Scholar 

  23. Golse, F., Saint-Raymond, L.: The Vlasov–Poisson system with strong magnetic field. J. Math. Pure. Appl. 78, 791–817 (1999)

    Article  MathSciNet  Google Scholar 

  24. Hairer, E., Lubich, C., Wang, B.: A filtered Boris algorithm for charged-particle dynamics in a strong magnetic field, arXiv preprint arXiv:1907.07452 (2019)

  25. Han-Kwan, D.: Contribution à l’étude mathématique des plasmas fortement magnétisés, PhD thesis, Université Pierre et Marie Curie-Paris VI (2011)

  26. Hazeltine, R.D., Meiss, J.D.: Plasma Confinement. Dover Publications, Mineola (2005)

    Google Scholar 

  27. Herda, M.: Analyse asymptotique et numérique de quelques modèles pour le transport de particules chargées, Ph.D. thesis, Université Claude Bernard Lyon 1 (2017)

  28. Herda, M., Rodrigues, L.M.: Anisotropic Boltzmann-Gibbs dynamics of strongly magnetized Vlasov–Fokker–Planck equations. Kinet. Relat. Models 12, 593–636 (2019)

    Article  MathSciNet  Google Scholar 

  29. Jin, S.: Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations. SIAM J. Sci. Comput. 21, 441–454 (1999)

    Article  MathSciNet  Google Scholar 

  30. Jin, S.: Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equations: A review, Lecture Notes for Summer School on “Methods and Models of Kinetic Theory” (M&MKT), Porto Ercole (Grosseto, Italy), (2010), pp. 177–216

  31. Klar, A.: A numerical method for nonstationary transport equations in diffusive regimes. Transp. Theor Stat. 27, 653–666 (1998)

    Article  MathSciNet  Google Scholar 

  32. Krommes, J.A.: The gyrokinetic description of microturbulence in magnetized plasmas. Annu. Rev. Fluid Mech. 44, 175–201 (2012)

    Article  MathSciNet  Google Scholar 

  33. Lee, W.: Gyrokinetic approach in particle simulation. Phys. Fluids 26, 556–562 (1983)

    Article  Google Scholar 

  34. Lutz, M.: Étude mathématique et numérique d’un modèle gyrocinétique incluant des effets électromagnétiques pour la simulation d’un plasma de Tokamak, Ph.D. thesis, Université de Strasbourg (2013)

  35. Matteo, V.F.: Gyrokinetic theory for particle transport in fusion plasmas, Ph.D. thesis, Università di Roma Tre (2017)

  36. Miot, É.: On the gyrokinetic limit for the two-dimensional Vlasov–Poisson system, arXiv preprint, arXiv:1603.04502 (2016)

  37. Saint-Raymond, L.: Control of large velocities in the two-dimensional gyrokinetic approximation. J. Math. Pure. Appl. 81, 379–399 (2002)

    Article  MathSciNet  Google Scholar 

  38. Scott, B.D.: Gyrokinetic field theory as a Gauge transform or: gyrokinetic theory without Lie transforms, arXiv preprint, arXiv:1708.06265 (2017)

  39. Sonnendrücker, E., Filbet, F., Friedman, A., Oudet, E., Vay, J.-L.: Vlasov simulations of beams with a moving grid. Comput. Phys. Commun. 164, 390–395 (2004)

    Article  Google Scholar 

  40. Yang, C., Filbet, F.: Conservative and non-conservative methods based on Hermite weighted essentially non-oscillatory reconstruction for Vlasov equations. J. Comput. Phys. 279, 18–36 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Francis Filbet is supported by the EUROfusion Consortium and has received funding from the Euratom research and training programme ENR-MFE19, ENR-IFE19. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francis Filbet.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Convergence analysis for oscillatory ODEs

Appendix: Convergence analysis for oscillatory ODEs

As announced in the introduction, we conclude with abstract considerations on the numerical analysis of oscillatory ODEs. Though insufficient to prove the relevant results, these considerations provide enlightening insights supporting correct educated guesses on the final outcomes.

Let us discuss a system of the form

$$\begin{aligned} {\left\{ \begin{array}{ll} ({\varvec{a}}_\varepsilon +\varepsilon ^{r_t}\,{{\mathbf {G}}}_t^\varepsilon (\cdot ,{\varvec{a}}_\varepsilon ,{\varvec{b}}_\varepsilon ))'(t)=\displaystyle {{\mathbf {F}}}_{\varvec{a}}^\varepsilon (t,{\varvec{a}}_\varepsilon (t))+\varepsilon ^{r_x}\,{{\mathbf {G}}}_x^\varepsilon (t,{\varvec{a}}_\varepsilon (t),{\varvec{b}}_\varepsilon (t))\,, \\ \displaystyle {\varvec{b}}_\varepsilon '(t)=-\frac{1}{\varepsilon ^2}{{\mathbf {J}}}\,{\varvec{b}}_\varepsilon (t)+{{\mathbf {F}}}_{\varvec{b}}^\varepsilon (t, {\varvec{a}}_\varepsilon (t),{\varvec{b}}_\varepsilon (t))\,, \end{array}\right. } \end{aligned}$$
(A.1)

(with \({{\mathbf {F}}}_{\varvec{a}}^\varepsilon \), \({{\mathbf {F}}}_{\varvec{b}}^\varepsilon \), \({{\mathbf {G}}}_t^\varepsilon \), \({{\mathbf {G}}}_x^\epsilon \) uniformly smooth) and try to guess what may be expected on the numerical computation of the slow variable \({\varvec{a}}_\varepsilon \). Expanding the first equation of the system with the second suggests that, with such a goal in mind, a direct convergence analysis of a discretization of (A.1) could be carried out by working with the vector \(({\varvec{a}}_\varepsilon ,\varepsilon ^{\min (r_t-2,r_x)}{\varvec{b}}_\varepsilon )\), and, arguing recursively, that its \((m+1)\)th derivative is bounded by a multiple of \(\max (\varepsilon ^{-(2m-\min (r_t-2,r_x))_+},\varepsilon ^{-(2(m+1)-\min (r_t-2,r_x))})\). As a consequence, a direct convergence analysis of a scheme of order m that would be unconditionally stable would result for the numerical approximation of \(({\varvec{a}}_\varepsilon ,\varepsilon ^{\min (r_t-2,r_x)}{\varvec{b}}_\varepsilon )\), thus also of \({\varvec{a}}_\varepsilon \), into a bound on numerical error by a multiple of

$$\begin{aligned} (\Delta t)^m\times \max \left( \frac{1}{\varepsilon ^{(2m-\min (r_t-2,r_x))_+}}, \frac{1}{\varepsilon ^{(2(m+1)-\min (r_t-2,r_x))}}\right) \,. \end{aligned}$$

For concreteness note that when analyzing the computation of the guiding center, \(r_t=3\) and \(r_x=2\) so that the bound is \(\Delta t^m/\varepsilon ^{(2m+1)}\). The bound is somewhat optimal in the prediction of the computational error for \(\varepsilon ^{\min (r_t-2,r_x)}{\varvec{b}}_\varepsilon \). With this respect note that even if by a particularly clever method, for instance through stroboscopic averaging, one is able to improve the computation of a fast variable at particularly well-chosen set of discrete times, this extra precision will be lost when recovering by interpolation from these discrete times an approximation of \({\varvec{b}}_\varepsilon \) on the whole continuous time interval.

System (A.1) suggests that the variable \({\varvec{a}}_\varepsilon \) is actually \({{\mathcal {O}}}(\varepsilon ^{\min (r_t,r_x)})\)-close as \(\varepsilon \rightarrow 0\) to a solution \({\varvec{a}}\) of the uncoupled non-stiff equation

$$\begin{aligned} {\varvec{a}}_\varepsilon '(t)=\displaystyle {{\mathbf {F}}}_{\varvec{a}}^\varepsilon (t,{\varvec{a}}(t))\,. \end{aligned}$$
(A.2)

For a scheme of order m consistent with the foregoing asymptotic and unconditionally stable this suggests a bound of the numerical error in the approximation of \({\varvec{a}}_\varepsilon \) by a multiple of

$$\begin{aligned} \varepsilon ^{\min (r_t,r_x)}+\Delta t^m\,. \end{aligned}$$

Note that to conclude to the latter bound it is sufficient to know that the \({\varvec{a}}\)-part of the solution of the discrete scheme for (A.1) converge as \(\varepsilon \rightarrow 0\) to a solution of a scheme of order m for (A.2) with rate \({{\mathcal {O}}}(\varepsilon ^{\min (r_t,r_x)}+\varepsilon \,\Delta t^{m\,\frac{\min (r_t,r_x)-1}{\min (r_t,r_x)}})\), leaving room for some depreciation of the continuous rate \({{\mathcal {O}}}(\varepsilon ^{\min (r_t,r_x)})\).

This provides a final bound of the numerical error for the variable \({\varvec{a}}_\varepsilon \) by a multiple of

$$\begin{aligned} \min \left( \varepsilon ^{\min (r_t,r_x)}+\Delta t^m,(\Delta t)^m\times \max \left( \frac{1}{\varepsilon ^{(2m-\min (r_t-2,r_x))_+}},\frac{1}{\varepsilon ^{(2(m+1)-\min (r_t-2,r_x))}}\right) \right) \,. \end{aligned}$$

In the present paper, we have turned the foregoing formal discussion into rigorous convergence analysis for some of the schemes introduced in [14] and a few extensions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filbet, F., Rodrigues, L.M. & Zakerzadeh, H. Convergence analysis of asymptotic preserving schemes for strongly magnetized plasmas. Numer. Math. 149, 549–593 (2021). https://doi.org/10.1007/s00211-021-01248-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-021-01248-x

Mathematics Subject Classification

Navigation