Skip to main content
Log in

A variational finite volume scheme for Wasserstein gradient flows

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We propose a variational finite volume scheme to approximate the solutions to Wasserstein gradient flows. The time discretization is based on an implicit linearization of the Wasserstein distance expressed thanks to Benamou–Brenier formula, whereas space discretization relies on upstream mobility two-point flux approximation finite volumes. The scheme is based on a first discretize then optimize approach in order to preserve the variational structure of the continuous model at the discrete level. It can be applied to a wide range of energies, guarantees non-negativity of the discrete solutions as well as decay of the energy. We show that the scheme admits a unique solution whatever the convex energy involved in the continuous problem, and we prove its convergence in the case of the linear Fokker–Planck equation with positive initial density. Numerical illustrations show that it is first order accurate in both time and space, and robust with respect to both the energy and the initial profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ait Hammou Oulhaj, A.: Numerical analysis of a finite volume scheme for a seawater intrusion model with cross-diffusion in an unconfined aquifer. Numer. Methods Part. Differ. Equ. 34(3), 857–880 (2018)

  2. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability. Lectures in Mathematics ETH Zürich measures, 2nd edn. Birkhäuser Verlag, Basel (2008)

    MATH  Google Scholar 

  3. Ambrosio, L., Mainini, E., Serfaty, S.: Gradient flow of the Chapman–Rubinstein–Schatzman model for signed vortices. Ann. Inst. H. Poincaré Anal. Non Linéaire 28(2), 217–246 (2011)

    MathSciNet  MATH  Google Scholar 

  4. Ambrosio, L., Serfaty, S.: A gradient flow approach to an evolution problem arising in superconductivity. Commun. Pure Appl. Math. 61(11), 1495–1539 (2008)

    MathSciNet  MATH  Google Scholar 

  5. Andreianov, B., Cancès, C., Moussa, A.: A nonlinear time compactness result and applications to discretization of degenerate parabolic-elliptic PDEs. J. Funct. Anal. 273(12), 3633–3670 (2017)

    MathSciNet  MATH  Google Scholar 

  6. Benamou, J.-D., Brenier, Y.: A computational fluid mechanics solution to the Monge–Kantorovich mass transfer problem. Numer. Math. 84(3), 375–393 (2000)

    MathSciNet  MATH  Google Scholar 

  7. Benamou, J.-D., Carlier, G., Laborde, M.: An augmented Lagrangian approach to Wasserstein gradient flows and applications. Gradient flows: from theory to application, volume 54 of ESAIM Proc. Surveys, pp. 1–17. EDP Sci, Les Ulis (2016)

  8. Bessemoulin-Chatard, M.: A finite volume scheme for convection–diffusion equations with nonlinear diffusion derived from the Scharfetter–Gummel scheme. Numer. Math. 121(4), 637–670 (2012)

    MathSciNet  MATH  Google Scholar 

  9. Blanchet, A.: A gradient flow approach to the Keller-Segel systems. RIMS Kokyuroku’s lecture notes, vol. 1837, pp. 52–73 (June 2013)

  10. Bolley, F., Gentil, I., Guillin, A.: Convergence to equilibrium in Wasserstein distance for Fokker–Planck equations. J. Funct. Anal. 263(8), 2430–2457 (2012)

    MathSciNet  MATH  Google Scholar 

  11. Brezis, H.: Functional Analysis. Sobolev Spaces and Partial Differential Equations. Universitext. Springer, New York (2011)

    MATH  Google Scholar 

  12. Calvez, V., Gallouët, T.O.: Particle approximation of the one dimensional Keller–Segel equation, stability and rigidity of the blow-up. Discr. Cont. Dyn. Syst. A 36(3), 1175–1208 (2016)

    MathSciNet  MATH  Google Scholar 

  13. Cancès, C.: Energy stable numerical methods for porous media flow type problems. In: Oil & Gas Science and Technology-Rev. IFPEN, vol. 73, pp. 1–18 (2018)

  14. Cancès, C., Gallouët, T.O., Laborde, M., Monsaingeon, L.: Simulation of multiphase porous media flows with minimizing movement and finite volume schemes. European J. Appl. Math 30(6), 1123–1152 (2019)

    MathSciNet  MATH  Google Scholar 

  15. Cancès, C., Gallouët, T.O., Monsaingeon, L.: Incompressible immiscible multiphase flows in porous media: a variational approach. Anal. PDE 10(8), 1845–1876 (2017)

    MathSciNet  MATH  Google Scholar 

  16. Cancès, C., Guichard, C.: Convergence of a nonlinear entropy diminishing Control Volume Finite Element scheme for solving anisotropic degenerate parabolic equations. Math. Comp. 85(298), 549–580 (2016)

    MathSciNet  MATH  Google Scholar 

  17. Cancès, C., Guichard, C.: Numerical analysis of a robust free energy diminishing finite volume scheme for parabolic equations with gradient structure. Found. Comput. Math. 17(6), 1525–1584 (2017)

    MathSciNet  MATH  Google Scholar 

  18. Cancès, C., Matthes, D., Nabet, F.: A two-phase two-fluxes degenerate Cahn-Hilliard model as constrained Wasserstein gradient flow. Arch. Ration. Mech. Anal. 233(2), 837–866 (2019)

    MathSciNet  MATH  Google Scholar 

  19. Cancès, C., Nabet, F., Vohralík, M.: Convergence and a posteriori error analysis for energy-stable finite element approximations of degenerate parabolic equations. Math. Comp. https://doi.org/10.1090/mcom/3577

  20. Carrillo, J.A., Craig, K., Patacchini, F.S.: A blob method for diffusion. Calc. Var. Part. Differ. Equ. 58(2), 53 (2019)

    MathSciNet  MATH  Google Scholar 

  21. Carrillo, J.A., Craig, K., Wang, L., Wei, C.: Primal dual methods for Wasserstein gradient flows. arXiv:1901.08081 (2019)

  22. Carrillo, J.A., DiFrancesco, M., Figalli, A., Laurent, T., Slepčev, D.: Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations. Duke Math. J. 156(2), 229–271 (2011)

    MathSciNet  MATH  Google Scholar 

  23. Carrillo, J.A., Düring, B., Matthes, D., McCormick, M.S.: A Lagrangian scheme for the solution of nonlinear diffusion equations using moving simplex meshes. J. Sci. Comput. 73(3), 1463–1499 (2018)

    MathSciNet  MATH  Google Scholar 

  24. Chainais-Hillairet, C., Liu, J.-G., Peng, Y.-J.: Finite volume scheme for multi-dimensional drift-diffusion equations and convergence analysis. ESAIM M2AN 37(2), 319–338 (2003)

    MathSciNet  MATH  Google Scholar 

  25. Erbar, M., Maas, J.: Gradient flow structures for discrete porous medium equations. Discrete Contin. Dyn. Syst. 34(4), 1355–1374 (2014)

    MathSciNet  MATH  Google Scholar 

  26. Eymard, R., Gallouët, T.: \(H\)-convergence and numerical schemes for elliptic problems. SIAM J. Numer. Anal. 41(2), 539–562 (2003)

    MathSciNet  MATH  Google Scholar 

  27. Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. In: Ciarlet, P.G., et al. (eds.) Handbook of numerical analysis, pp. 713–1020. North-Holland, Amsterdam (2000)

    Google Scholar 

  28. Fuhrmann, J.: Existence and uniqueness of solutions of certain systems of algebraic equations with off-diagonal nonlinearity. Appl. Numer. Math. 37, 359–370 (2001)

    MathSciNet  MATH  Google Scholar 

  29. Gärtner, K., Kamenski, L.: Why do we need Voronoi cells and Delaunay meshes? In: Garanzha, V.A., Kamenski, L., Si, H. (eds.) Numerical Geometry, Grid Generation and Scientific Computing. Lecture Notes in Computational Science and Engineering, pp. 45–60. Springer, Berlin (2019)

    MATH  Google Scholar 

  30. Gigli, N., Maas, J.: Gromov–Hausdorff convergence of discrete transportation metrics. SIAM J. Math. Anal. 45(2), 879–899 (2013)

    MathSciNet  MATH  Google Scholar 

  31. Gladbach, P., Kopfer, E., Maas, J.: Scaling limits of discrete optimal transport. SIAM J. Math. Anal. 52(3), 2759–2802 (2020)

  32. Heida, M.: Convergences of the squareroot approximation scheme to the Fokker–Planck operator. Math. Models Methods Appl. Sci. 28(13), 2599–2635 (2018)

    MathSciNet  MATH  Google Scholar 

  33. Jacobs, M., Kim, I., Mészáros, A.R.: Weak solutions to the Muskat problem with surface tension via optimal transport. arXiv:1905.05370, (2019)

  34. Jordan, R., Kinderlehrer, D., Otto, F.: The variational formulation of the Fokker–Planck equation. SIAM J. Math. Anal. 29(1), 1–17 (1998)

    MathSciNet  MATH  Google Scholar 

  35. Junge, O., Matthes, D., Osberger, H.: A fully discrete variational scheme for solving nonlinear Fokker–Planck equations in multiple space dimensions. SIAM J. Numer. Anal. 55(1), 419–443 (2017)

    MathSciNet  MATH  Google Scholar 

  36. Kinderlehrer, D., Monsaingeon, L., Xu, X.: A Wasserstein gradient flow approach to Poisson–Nernst–Planck equations. ESAIM Control Optim. Calc. Var. 23(1), 137–164 (2017)

    MathSciNet  MATH  Google Scholar 

  37. Kinderlehrer, D., Walkington, N.J.: Approximation of parabolic equations using the Wasserstein metric. M2AN Math. Model. Numer. Anal. 33(4), 837–852 (1999)

    MathSciNet  MATH  Google Scholar 

  38. Laurençot, P., Matioc, B.-V.: A gradient flow approach to a thin film approximation of the Muskat problem. Calc. Var. Part. Differ. Equ. 47((1–2)), 319–341 (2013)

    MathSciNet  MATH  Google Scholar 

  39. Leclerc, H., Mérigot, Q., Santambrogio, F., Stra, F.: Lagrangian discretization of crowd motion and linear diffusion. SIAM J. Numer. Anal. 58(4), 2093–2118 (2020)

    MathSciNet  MATH  Google Scholar 

  40. Leray, J., Schauder, J.: Topologie et équations fonctionnelles. Ann. Sci. École Norm. Sup. 51((3)), 45–78 (1934)

    MathSciNet  MATH  Google Scholar 

  41. Li, W., Lu, J., Wang, L.: Fisher information regularization schemes for Wasserstein gradient flows. J. Comput. Phys. 416, 109449 (2020)

    MathSciNet  MATH  Google Scholar 

  42. Maas, J.: Gradient flows of the entropy for finite Markov chains. J. Funct. Anal. 261(8), 2250–2292 (2011)

    MathSciNet  MATH  Google Scholar 

  43. Maas, J., Matthes, D.: Long-time behavior of a finite volume discretization for a fourth order diffusion equation. Nonlinearity 29(7), 1992–2023 (2016)

    MathSciNet  MATH  Google Scholar 

  44. Matthes, D., McCann, R., Savar’e, G.: A family of nonlinear fourth order equations of gradient flow type. Commun. Part. Differ. Equ. 34(11), 1352–1397 (2009)

    MathSciNet  MATH  Google Scholar 

  45. Matthes, D., Osberger, H.: Convergence of a variational Lagrangian scheme for a nonlinear drift diffusion equation. ESAIM Math. Model. Numer. Anal. 48(3), 697–726 (2014)

    MathSciNet  MATH  Google Scholar 

  46. Matthes, D., Osberger, H.: A convergent Lagrangian discretization for a nonlinear fourth-order equation. Found. Comput. Math. 17(1), 73–126 (2017)

    MathSciNet  MATH  Google Scholar 

  47. Maury, B., Roudneff-Chupin, A., Santambrogio, F.: A macroscopic crowd motion model of gradient flow type. Math. Models Methods Appl. Sci. 20(10), 1787–1821 (2010)

    MathSciNet  MATH  Google Scholar 

  48. Mielke, A.: A gradient structure for reaction–diffusion systems and for energy–drift–diffusion systems. Nonlinearity 24(4), 1329–1346 (2011)

    MathSciNet  MATH  Google Scholar 

  49. Moussa, A.: Some variants of the classical Aubin—Lions Lemma. J. Evol. Equ. 16(1), 65–93 (2016)

    MathSciNet  MATH  Google Scholar 

  50. Murphy, T.J., Walkington, N.J.: Control volume approximation of degenerate two-phase porous media flows. SIAM J. Numer. Anal. 57(2), 527–546 (2019)

    MathSciNet  MATH  Google Scholar 

  51. Neves de Almeida, L., Bubba, F., Perthame, B., Pouchol, C.: Energy and implicit discretization of the Fokker–Planck and Keller–Segel type equations. arXiv:1803.10629 (2018)

  52. Otto, F.: Dynamics of labyrinthine pattern formation in magnetic fluids: a mean-field theory. Arch. Rational Mech. Anal. 141(1), 63–103 (1998)

    MathSciNet  MATH  Google Scholar 

  53. Otto, F.: The geometry of dissipative evolution equations: the porous medium equation. Comm. Part. Differ. Equ. 26(1–2), 101–174 (2001)

    MathSciNet  MATH  Google Scholar 

  54. Peyre, R.: Comparison between \(W_2\) distance and \(H^{-1}\) norm, and localization of Wasserstein distance. ESAIM COCV 24(4), 1489–1501 (2018)

    MATH  Google Scholar 

  55. Santambrogio, F.: Optimal Transport for Applied Mathematicians: Calculus of Variations, PDEs, and Modeling. Progress in Nonlinear Differential Equations and Their Applications 87, 1st edn. Birkhäuser, Basel (2015)

    Google Scholar 

  56. Sun, Z., Carrillo, J.A., Shu, C.-W.: A discontinuous Galerkin method for nonlinear parabolic equations and gradient flow problems with interaction potentials. J. Comput. Phys. 352, 76–104 (2018)

    MathSciNet  MATH  Google Scholar 

  57. Villani, C.: Topics in optimal transportation. Graduate Studies in Mathematics, vol. 58. American Mathematical Society, Providence, RI (2003)

  58. Visintin, A.: Models of Phase Transitions, Volume 28 of Progress in Nonlinear Differential Equations and Their Applications. Birkhäuser, Boston (1996)

    Google Scholar 

Download references

Acknowledgements

CC acknowledges the support of the Labex CEMPI (ANR-11-LABX-0007-01). GT acknowledges that this project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 754362. We also thank Guillaume Carlier and Quentin Mérigot for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clément Cancès.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cancès, C., Gallouët, T.O. & Todeschi, G. A variational finite volume scheme for Wasserstein gradient flows. Numer. Math. 146, 437–480 (2020). https://doi.org/10.1007/s00211-020-01153-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-020-01153-9

Mathematics Subject Classification

Navigation