Skip to main content
Log in

A structure-preserving FEM for the uniaxially constrained \(\mathbf{Q}\)-tensor model of nematic liquid crystals

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We consider the one-constant Landau-de Gennes model for nematic liquid crystals. The order parameter is a traceless tensor field \(\mathbf{Q}\), which is constrained to be uniaxial: \(\mathbf{Q}= s (\mathbf{n}\otimes \mathbf{n}- d^{-1}\mathbf{I})\) where \(\mathbf{n}\) is a director field, \(s\in \mathbb {R}\) is the degree of orientation, and \(d\ge 2\) is the dimension. Building on similarities with the one-constant Ericksen energy, we propose a structure-preserving finite element method for the computation of equilibrium configurations. We prove stability and consistency of the method without regularization, and \(\Gamma \)-convergence of the discrete energies towards the continuous one as the mesh size goes to zero. We design an alternating direction gradient flow algorithm for the solution of the discrete problems, and we show that such a scheme decreases the energy monotonically. Finally, we illustrate the method’s capabilities by presenting some numerical simulations in two and three dimensions including non-orientable line fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adler, J.H., Atherton, T.J., Emerson, D.B., MacLachlan, S.P.: An energy-minimization finite-element approach for the Frank–Oseen model of nematic liquid crystals. SIAM J. Numer. Anal. 53(5), 2226–2254 (2015)

    MathSciNet  MATH  Google Scholar 

  2. Alama, S., Bronsard, L., Lamy, X.: Analytical description of the Saturn-ring defect in nematic colloids. Phys. Rev. E 93, 012705 (2016)

    Google Scholar 

  3. Alouges, F.: A new algorithm for computing liquid crystal stable configurations: the harmonic mapping case. SIAM J. Numer. Anal. 34(5), 1708–1726 (1997)

    MathSciNet  MATH  Google Scholar 

  4. Ambrosio, L.: Existence of minimal energy configurations of nematic liquid crystals with variable degree of orientation. Manuscripta Math. 68(1), 215–228 (1990)

    MathSciNet  MATH  Google Scholar 

  5. Araki, T., Tanaka, H.: Colloidal aggregation in a nematic liquid crystal: topological arrest of particles by a single-stroke disclination line. Phys. Rev. Lett. 97, 127801 (2006)

    Google Scholar 

  6. Bajc, I., Hecht, F., Žumer, S.: A mesh adaptivity scheme on the Landau-de Gennes functional minimization case in 3d, and its driving efficiency. J. Comput. Phys. 321, 981–996 (2016)

    MathSciNet  MATH  Google Scholar 

  7. Balan, R., Zou, D.: On Lipschitz analysis and Lipschitz synthesis for the phase retrieval problem. Linear Algebra Appl. 496, 152–181 (2016)

    MathSciNet  MATH  Google Scholar 

  8. Ball, J.M., Zarnescu, A.: Orientable and non-orientable director fields for liquid crystals. Proc. Appl. Math. Mech. (PAMM) 7(1), 1050701–1050704 (2007)

    Google Scholar 

  9. Ball, J.M., Zarnescu, A.: Orientability and energy minimization in liquid crystal models. Arch. Ration. Mech. Anal. 202(2), 493–535 (2011)

    MathSciNet  MATH  Google Scholar 

  10. Barrett, J.W., Feng, X., Prohl, A.: Convergence of a fully discrete finite element method for a degenerate parabolic system modelling nematic liquid crystals with variable degree of orientation. M2AN Math. Model. Numer. Anal. 40, 175–199 (2006)

    MathSciNet  MATH  Google Scholar 

  11. Bartels, S.: Numerical analysis of a finite element scheme for the approximation of harmonic maps into surfaces. Math. Comput. 79(271), 1263–1301 (2010)

    MathSciNet  MATH  Google Scholar 

  12. Bartels, S., Raisch, A.: Simulation of Q-tensor fields with constant orientational order parameter in the theory of uniaxial nematic liquid crystals. In: Griebel, M. (ed.) Singular Phenomena and Scaling in Mathematical Models, pp. 383–412. Springer, Berlin (2014)

    MATH  Google Scholar 

  13. Bhatia, R.: Matrix Analysis, Volume 169 of Graduate Texts in Mathematics. Springer, New York (1997)

    Google Scholar 

  14. Borthagaray, J.P., Walker, S.W.: The \({\bf Q}\)-tensor Model with Uniaxial Constraint. ArXiv e-prints (2020)

  15. Braides, A.: \(\Gamma \)-Convergence for Beginners, Volume 22 of Oxford Lecture Series in Mathematics and Its Applications. Oxford Scholarship, Oxford (2002)

  16. Braides, A.: Local Minimization, Variational Evolution and \(\Gamma \)-Convergence. Lecture Notes in Mathematics, vol. 2094. Springer, Berlin (2014)

  17. Brinkman, W.F., Cladis, P.E.: Defects in liquid crystals. Phys. Today 35, 48–56 (1982)

    Google Scholar 

  18. Ciarlet, P.G., Raviart, P.-A.: Maximum principle and uniform convergence for the finite element method. Comput. Methods Appl. Mech. Eng. 2(1), 17–31 (1973)

    MathSciNet  MATH  Google Scholar 

  19. Cohen, R., Lin, S.-Y., Luskin, M.: Relaxation and gradient methods for molecular orientation in liquid crystals. Comput. Phys. Commun. 53(1–3), 455–465 (1989)

    MathSciNet  Google Scholar 

  20. Cruz, P.A., Tomé, M.F., Stewart, I.W., McKee, S.: Numerical solution of the Ericksen–Leslie dynamic equations for two-dimensional nematic liquid crystal flows. J. Comput. Phys. 247, 109–136 (2013)

    MathSciNet  MATH  Google Scholar 

  21. Dal Maso, G.: An introduction to \(\Gamma \)-Convergence. Progress in Nonlinear Differential Equations and their Applications, vol. 8. Birkhäuser Boston, Inc., Boston (1993)

    Google Scholar 

  22. Davis, T., Gartland, E.C.: Finite element analysis of the Landau-de Gennes minimization problem for liquid crystals. SIAM J. Numer. Anal. 35(1), 336–362 (1998)

    MathSciNet  MATH  Google Scholar 

  23. de Gennes, P.G., Prost, J.: The Physics of Liquid Crystals: International Series of Monographs on Physics, vol. 83, 2nd edn. Oxford Science Publication, Oxford (1995)

    Google Scholar 

  24. Ericksen, J.L.: Liquid crystals with variable degree of orientation. Arch. Ration. Mech. Anal. 113(2), 97–120 (1991)

    MathSciNet  MATH  Google Scholar 

  25. Evans, L.C.: Partial Differential Equations. American Mathematical Society, Providence (1998)

    MATH  Google Scholar 

  26. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. Textbooks in Mathematics, revised edn. CRC Press, Boca Raton (2015)

    MATH  Google Scholar 

  27. Freiser, M.J.: Ordered states of a nematic liquid. Phys. Rev. Lett. 24(19), 1041 (1970)

    Google Scholar 

  28. Gartland, E.C.: Scalings and limits of Landau-de Gennes models for liquid crystals: a comment on some recent analytical papers. Math. Model. Anal. 23(3), 414–432 (2018)

    MathSciNet  Google Scholar 

  29. Gartland, E.C., Palffy-Muhoray, P., Varga, R.S.: Numerical minimization of the Landau-de Gennes free energy: defects in cylindrical capillaries. Mol. Cryst. Liq. Cryst. 199(1), 429–452 (1991)

    Google Scholar 

  30. Gartland, E.C., Ramage, A.: A renormalized Newton method for liquid crystal director modeling. SIAM J. Numer. Anal. 53(1), 251–278 (2015)

    MathSciNet  MATH  Google Scholar 

  31. Gramsbergen, E.F., Longa, L., de Jeu, W.H.: Landau theory of the nematic-isotropic phase transition. Phys. Rep. 135(4), 195–257 (1986)

    Google Scholar 

  32. Gu, Y., Abbott, N.L.: Observation of saturn-ring defects around solid microspheres in nematic liquid crystals. Phys. Rev. Lett. 85, 4719–4722 (2000)

    Google Scholar 

  33. Guillén-González, F.M., Gutiérrez-Santacreu, J.V.: A linear mixed finite element scheme for a nematic Ericksen–Leslie liquid crystal model. M2AN Math. Model. Numer. Anal. 47, 1433–1464 (2013)

    MathSciNet  MATH  Google Scholar 

  34. Holzapfel, G.A.: Nonlinear Solid Mechanics: A Continuum Approach For Engineering. Wiley, Hoboken (2000)

    MATH  Google Scholar 

  35. James, R., Willman, E., FernandezFernandez, F.A., Day, S.E.: Finite-element modeling of liquid–crystal hydrodynamics with a variable degree of order. IEEE Trans. Electron Devices 53(7), 1575–1582 (2006)

    Google Scholar 

  36. Kim, Y.-K., Shiyanovskii, S.V., Lavrentovich, O.D.: Morphogenesis of defects and tactoids during isotropic-nematic phase transition in self-assembled lyotropic chromonic liquid crystals. J. Phys.: Condens. Matter 25(40), 404202 (2013)

    Google Scholar 

  37. Kohn, R.V., Sternberg, P.: Local minimisers and singular perturbations. Proc. Roy. Soc. Edinb. Sect. A 111(1–2), 69–84 (1989)

    MathSciNet  MATH  Google Scholar 

  38. Lamy, X.: A New Light on the Breaking of Uniaxial Symmetry in Nematics. arXiv:1307.0295 (2013)

  39. Lee, G.-D., Anderson, J., Bos, P.J.: Fast Q-tensor method for modeling liquid crystal director configurations with defects. Appl. Phys. Lett. 81(21), 3951–3953 (2002)

    Google Scholar 

  40. Lin, F.H.: On nematic liquid crystals with variable degree of orientation. Commun. Pure Appl. Math. 44(4), 453–468 (1991)

    MathSciNet  MATH  Google Scholar 

  41. Lin, S.-Y., Luskin, M.: Relaxation methods for liquid crystal problems. SIAM J. Numer. Anal. 26(6), 1310–1324 (1989)

    MathSciNet  MATH  Google Scholar 

  42. Liu, C., Walkington, N.: Approximation of liquid crystal flows. SIAM J. Numer. Anal. 37(3), 725–741 (2000)

    MathSciNet  MATH  Google Scholar 

  43. Madsen, L.A., Dingemans, T.J., Nakata, M., Samulski, E.T.: Thermotropic biaxial nematic liquid crystals. Phys. Rev. Lett. 92, 145505 (2004)

    Google Scholar 

  44. Majumdar, Apala: Equilibrium order parameters of nematic liquid crystals in the landau-de gennes theory. Eur. J. Appl. Math. 21(2), 181–203 (2010)

    MathSciNet  MATH  Google Scholar 

  45. Mottram, N.J., Newton, C.J.P.: Introduction to Q-Tensor Theory. ArXiv e-prints (2014)

  46. Nochetto, R.H., Walker, S.W., Zhang, W.: Numerics for liquid crystals with variable degree of orientation. In Symposium NN - Mathematical and Computational Aspects of Materials Science, volume 1753 of MRS Proceedings (2015)

  47. Nochetto, R.H., Walker, S.W., Zhang, W.: A finite element method for nematic liquid crystals with variable degree of orientation. SIAM J. Numer. Anal. 55(3), 1357–1386 (2017)

    MathSciNet  MATH  Google Scholar 

  48. Nochetto, R.H., Walker, S.W., Zhang, W.: The Ericksen model of liquid crystals with colloidal and electric effects. J. Comput. Phys. 352, 568–601 (2018)

    MathSciNet  MATH  Google Scholar 

  49. Ohzono, T., Katoh, K., Wang, C., Fukazawa, A., Yamaguchi, S., Fukuda, J.: Uncovering different states of topological defects in schlieren textures of a nematic liquid crystal. Sci. Rep. 7(1), 16814 (2017)

    Google Scholar 

  50. Palffy-Muhoray, P., Gartland, E.C., Kelly, J.R.: A new configurational transition in inhomogeneous nematics. Liq. Cryst. 16(4), 713–718 (1994)

    Google Scholar 

  51. Prasad, V., Kang, S.-W., Suresh, K.A., Joshi, L., Wang, Q., Kumar, S.: Thermotropic uniaxial and biaxial nematic and smectic phases in bent-core mesogens. J. Am. Chem. Soc. 127(49), 17224–17227 (2005)

    Google Scholar 

  52. Ravnik, M., Žumer, S.: Landau-deGennes modelling of nematic liquid crystal colloids. Liquid Cryst. 36(10–11), 1201–1214 (2009)

    Google Scholar 

  53. Schopohl, N., Sluckin, T.J.: Defect core structure in nematic liquid crystals. Phys. Rev. Lett. 59(22), 2582 (1987)

    Google Scholar 

  54. Shen, J., Yang, X.: A phase-field model and its numerical approximation for two-phase incompressible flows with different densities and viscosities. SIAM J. Sci. Comput. 32(3), 1159–1179 (2010)

    MathSciNet  MATH  Google Scholar 

  55. Sonnet, A., Kilian, A., Hess, S.: Alignment tensor versus director: description of defects in nematic liquid crystals. Phys. Rev. E 52, 718–722 (1995)

    Google Scholar 

  56. Sonnet, A.M., Virga, E.: Dissipative Ordered Fluids: Theories for Liquid Crystals. Springer, Berlin (2012)

    MATH  Google Scholar 

  57. Strang, G., Fix, G.: An Analysis of the Finite Element Method, 2nd edn. Wellesley-Cambridge, Cambridge (2008)

    MATH  Google Scholar 

  58. Temam, R.M., Miranville, A.M.: Mathematical Modeling in Continuum Mechanics, 2nd edn. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  59. Tojo, K., Furukawa, A., Araki, T., Onuki, A.: Defect structures in nematic liquid crystals around charged particles. Eur. Phys. J. E 30(1), 55–64 (2009)

    Google Scholar 

  60. Truesdell, C.A.: A First Course in Rational Continuum Mechanics: Pure and Applied Mathematics, A Series of Monographs and Textbooks. Academic Press, Cambridge (1976)

    Google Scholar 

  61. Virga, E.G.: Variational Theories for Liquid Crystals, vol. 8, 1st edn. Chapman and Hall, London (1994)

    MATH  Google Scholar 

  62. Walker, S.W.: FELICITY: A Matlab/C++ toolbox for developing finite element methods and simulation modeling. SIAM J. Sci. Comput. 40(2), C234–C257 (2018)

    MathSciNet  MATH  Google Scholar 

  63. Walkington, N.J.: Numerical approximation of nematic liquid crystal flows governed by the Ericksen–Leslie equations. M2AN Math. Model. Numer. Anal. 45, 523–540 (2011)

    MathSciNet  MATH  Google Scholar 

  64. Wise, S.M., Wang, C., Lowengrub, J.S.: An energy-stable and convergent finite-difference scheme for the phase field crystal equation. SIAM J. Numer. Anal. 47(3), 2269–2288 (2009)

    MathSciNet  MATH  Google Scholar 

  65. Yu, L.J., Saupe, A.: Observation of a biaxial nematic phase in potassium laurate-1-decanol-water mixtures. Phys. Rev. Lett. 45(12), 1000 (1980)

    Google Scholar 

  66. Zhao, J., Wang, Q.: Semi-discrete energy-stable schemes for a tensor-based hydrodynamic model of nematic liquid crystal flows. J. Sci. Comput. 68(3), 1241–1266 (2016)

    MathSciNet  MATH  Google Scholar 

  67. Zhao, J., Yang, X., Shen, J., Wang, Q.: A decoupled energy stable scheme for a hydrodynamic phase-field model of mixtures of nematic liquid crystals and viscous fluids. J. Comput. Phys. 305, 539–556 (2016)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank Wenbo Li for pointing out reference [7] and suggesting an idea for the proof of Lemma 4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Pablo Borthagaray.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

JPB has been supported in part by NSF grant DMS-1411808 and an AMS-Simons Travel Grant. RHN has been supported in part by NSF Grants DMS-1411808 and DMS-1908267. SWW has been supported in part by NSF Grant DMS-1555222 (CAREER).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borthagaray, J.P., Nochetto, R.H. & Walker, S.W. A structure-preserving FEM for the uniaxially constrained \(\mathbf{Q}\)-tensor model of nematic liquid crystals. Numer. Math. 145, 837–881 (2020). https://doi.org/10.1007/s00211-020-01133-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-020-01133-z

Keywords

Mathematics Subject Classification

Navigation