Skip to main content
Log in

First-order least-squares method for the obstacle problem

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We define and analyse a least-squares finite element method for a first-order reformulation of the obstacle problem. Moreover, we derive variational inequalities that are based on similar but non-symmetric bilinear forms. A priori error estimates including the case of non-conforming convex sets are given and optimal convergence rates are shown for the lowest-order case. We provide a posteriori bounds that can be used as error indicators in an adaptive algorithm. Numerical studies are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Attia, F.S., Cai, Z., Starke, G.: First-order system least squares for the Signorini contact problem in linear elasticity. SIAM J. Numer. Anal. 47(4), 3027–3043 (2009)

    Article  MathSciNet  Google Scholar 

  2. Banz, L., Schröder, A.: Biorthogonal basis functions in \(hp\)-adaptive FEM for elliptic obstacle problems. Comput. Math. Appl. 70(8), 1721–1742 (2015)

    Article  MathSciNet  Google Scholar 

  3. Banz, L., Stephan, E.P.: A posteriori error estimates of \(hp\)-adaptive IPDG-FEM for elliptic obstacle problems. Appl. Numer. Math. 76, 76–92 (2014)

    Article  MathSciNet  Google Scholar 

  4. Bartels, S., Carstensen, C.: Averaging techniques yield reliable a posteriori finite element error control for obstacle problems. Numer. Math. 99(2), 225–249 (2004)

    Article  MathSciNet  Google Scholar 

  5. Bochev, P., Gunzburger, M.: Least-squares finite element methods. In: International Congress of Mathematicians, vol. III, pp. 1137–1162. Eur. Math. Soc., Zürich (2006)

  6. Bochev, P.B., Gunzburger, M.D.: Least-Squares Finite Element Methods. Applied Mathematical Sciences, vol. 166. Springer, New York (2009)

    MATH  Google Scholar 

  7. Braess, D.: A posteriori error estimators for obstacle problems—another look. Numer. Math. 101(3), 415–421 (2005)

    Article  MathSciNet  Google Scholar 

  8. Bramble, J.H., Lazarov, R.D., Pasciak, J.E.: A least-squares approach based on a discrete minus one inner product for first order systems. Math. Comput. 66(219), 935–955 (1997)

    Article  MathSciNet  Google Scholar 

  9. Burman, E., Hansbo, P., Larson, M.G., Stenberg, R.: Galerkin least squares finite element method for the obstacle problem. Comput. Methods Appl. Mech. Eng. 313, 362–374 (2017)

    Article  MathSciNet  Google Scholar 

  10. Chen, Z., Nochetto, R.H.: Residual type a posteriori error estimates for elliptic obstacle problems. Numer. Math. 84(4), 527–548 (2000)

    Article  MathSciNet  Google Scholar 

  11. Chouly, F., Hild, P.: A Nitsche-based method for unilateral contact problems: numerical analysis. SIAM J. Numer. Anal. 51(2), 1295–1307 (2013)

    Article  MathSciNet  Google Scholar 

  12. Drouet, G., Hild, P.: Optimal convergence for discrete variational inequalities modelling Signorini contact in 2D and 3D without additional assumptions on the unknown contact set. SIAM J. Numer. Anal. 53(3), 1488–1507 (2015)

    Article  MathSciNet  Google Scholar 

  13. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. Textbooks in Mathematics, revised edn. CRC Press, Boca Raton (2015)

  14. Falk, R.S.: Error estimates for the approximation of a class of variational inequalities. Math. Comput. 28, 963–971 (1974)

    Article  MathSciNet  Google Scholar 

  15. Führer, T., Heuer, N., Stephan, E.P.: On the DPG method for Signorini problems. IMA J. Numer. Anal. 38(4), 1893–1926 (2018)

    Article  MathSciNet  Google Scholar 

  16. Glowinski, R.: Numerical methods for nonlinear variational problems. In: Scientific Computation. Springer, Berlin (2008). Reprint of the 1984 original

  17. Glowinski, R., Lions, J.-L., Trémolières, R.: Numerical Analysis of Variational Inequalities, Volume 8 of Studies in Mathematics and Its Applications. North-Holland Publishing Co., Amsterdam (1981). Translated from the French

    Chapter  Google Scholar 

  18. Gustafsson, T., Stenberg, R., Videman, J.: Mixed and stabilized finite element methods for the obstacle problem. SIAM J. Numer. Anal. 55(6), 2718–2744 (2017)

    Article  MathSciNet  Google Scholar 

  19. Gustafsson, T., Stenberg, R., Videman, J.: On finite element formulations for the obstacle problem—mixed and stabilised methods. Comput. Methods Appl. Math. 17(3), 413–429 (2017)

    Article  MathSciNet  Google Scholar 

  20. Gustafsson, T., Stenberg, R., Videman, J.: A stabilised finite element method for the plate obstacle problem. BIT 59(1), 97–124 (2019)

    Article  MathSciNet  Google Scholar 

  21. Hintermüller, M., Ito, K., Kunisch, K.: The primal–dual active set strategy as a semismooth Newton method. SIAM J. Optim. 13(3), 865–888 (2003), 2002

    Article  MathSciNet  Google Scholar 

  22. Hoppe, R.H.W., Kornhuber, R.: Adaptive multilevel methods for obstacle problems. SIAM J. Numer. Anal. 31(2), 301–323 (1994)

    Article  MathSciNet  Google Scholar 

  23. Kärkkäinen, T., Kunisch, K., Tarvainen, P.: Augmented Lagrangian active set methods for obstacle problems. J. Optim. Theory Appl. 119(3), 499–533 (2003)

    Article  MathSciNet  Google Scholar 

  24. Karkulik, M., Pavlicek, D., Praetorius, D.: On 2D newest vertex bisection: optimality of mesh-closure and \(H^1\)-stability of \(L_2\)-projection. Constr. Approx. 38(2), 213–234 (2013)

    Article  MathSciNet  Google Scholar 

  25. Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications, Volume 31 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2000). Reprint of the 1980 original

  26. Krause, R., Müller, B., Starke, G.: An adaptive least-squares mixed finite element method for the Signorini problem. Numer. Methods Partial Differ. Equ. 33(1), 276–289 (2017)

    Article  MathSciNet  Google Scholar 

  27. Nochetto, R.H., Siebert, K.G., Veeser, A.: Pointwise a posteriori error control for elliptic obstacle problems. Numer. Math. 95(1), 163–195 (2003)

    Article  MathSciNet  Google Scholar 

  28. Nochetto, R.H., Siebert, K.G., Veeser, A.: Fully localized a posteriori error estimators and barrier sets for contact problems. SIAM J. Numer. Anal. 42(5), 2118–2135 (2005)

    Article  MathSciNet  Google Scholar 

  29. Rodrigues, J.-F.: Obstacle Problems in Mathematical Physics, Volume 134 of North-Holland Mathematics Studies. North-Holland Publishing Co., Amsterdam (1987). Notas de Matemática [Mathematical Notes], 114

    Chapter  Google Scholar 

  30. Stevenson, R.: The completion of locally refined simplicial partitions created by bisection. Math. Comput. 77(261), 227–241 (2008)

    Article  MathSciNet  Google Scholar 

  31. Veeser, A.: Efficient and reliable a posteriori error estimators for elliptic obstacle problems. SIAM J. Numer. Anal. 39(1), 146–167 (2001)

    Article  MathSciNet  Google Scholar 

  32. Weiss, A., Wohlmuth, B.I.: A posteriori error estimator for obstacle problems. SIAM J. Sci. Comput. 32(5), 2627–2658 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by CONICYT through FONDECYT project “Least-squares methods for obstacle problems” under Grant 11170050.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Führer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Non-convexity of functional J

Recall that the functional \(J(\cdot ;f,g)\) is convex if and only if

$$\begin{aligned} a_1(\varvec{u}-\varvec{v},\varvec{u}-\varvec{v}) \ge 0 \quad \text {for all } \varvec{u},\varvec{v}\in K^s := \big \{(w,{\varvec{\chi }},\nu )\in U{:}\,w\ge g, \, \nu \ge 0\big \}. \end{aligned}$$

In the following we construct a simple example that shows that the above inequality does not hold in general, thus J is not convex resp. \(a(\cdot ,\cdot ) = a_1(\cdot ,\cdot )\) is not coercive.

To that end, let \(u\in H_0^1(\Omega )\) denote the solution of \(\Delta u = 1\) in the square domain \(\Omega = (0,d)^2\). Then, \(u\le 0\) in \(\Omega \). Choose the obstacle as \(g= u\) (or \(g\le u\)). Note that \(\varvec{v}:= (0,0,0)\in K^s\) and that \(\varvec{u}:=(u,\varvec{\sigma },\Delta u) := (u,\nabla u,\Delta u)\in K^s\). We have that

$$\begin{aligned} \Vert 1\Vert _{-1} = \sup _{0\ne v\in H_0^1(\Omega )} \frac{\langle 1,v\rangle }{\Vert \nabla v\Vert _{}} = \sup _{0\ne v\in H_0^1(\Omega )} \frac{-(\nabla u,\nabla v)}{\Vert \nabla v\Vert _{}} = \Vert \nabla u\Vert _{}. \end{aligned}$$

Therefore \(\Vert 1\Vert _{-1}^2 = \Vert \nabla u\Vert _{}^2 = -\langle 1,u\rangle \). Using this we infer that

$$\begin{aligned} a_1(\varvec{u}-\varvec{v},\varvec{u}-\varvec{v}) = \Vert {{\,\mathrm{div}\,}}\varvec{\sigma }+1\Vert _{}^2 + \Vert \nabla u-\varvec{\sigma }\Vert _{}^2 + \langle 1,u\rangle = \Vert 2\Vert _{}^2 - \Vert 1\Vert _{-1}^2. \end{aligned}$$

Hence, \(a_1(\varvec{u}-\varvec{v},\varvec{u}-\varvec{v}) < 0\) if and only if \(\Vert 2\Vert _{} < \Vert 1\Vert _{-1}\). Clearly, \(\Vert 2\Vert _{} = 2 |\Omega |^{1/2} = 2d\). We investigate the scaling of the negative order norm. Let \(\widehat{\Omega }\) denote the unit square \((0,1)^2\). Then,

$$\begin{aligned} \Vert 1\Vert _{-1} = \sup _{0\ne v\in H_0^1(\Omega )} \frac{\langle 1,v\rangle }{\Vert \nabla v\Vert _{}} = |\Omega | \sup _{0\ne \widehat{v} \in H_0^1(\widehat{\Omega })} \frac{(1,\widehat{v})_{\widehat{\Omega }}}{\Vert \nabla \widehat{v}\Vert _{\widehat{\Omega }}} = |\Omega | \, \Vert 1\Vert _{-1,\widehat{\Omega }} =: |\Omega | \, C. \end{aligned}$$

Finally, \(\Vert 2\Vert _{} < \Vert 1\Vert _{-1}\) if

$$\begin{aligned} 2d < C d^2 \end{aligned}$$

which holds for sufficiently large d.

Appendix B: Proof of Lemma 12

We use \(T_\mathrm {C}:= T_\mathrm {C}(v)\) and \(T_\mathrm {NC} := T_\mathrm {NC}(v)\). If \(|T_\mathrm {NC}|=0\), then \(v=0\) on T and the first inequality is trivial. Note that also \(\nabla v =0\). Therefore, the second inequality is trivial as well. From now on we thus assume \(|T_\mathrm {NC}|>0\). Using that \(v=0\) on \(T_\mathrm {C}\) and the identity

$$\begin{aligned} v(\varvec{x})-v(\varvec{y}) = (\varvec{x}-\varvec{y})\cdot \int _0^1 \nabla v (s \varvec{x}+ (1-s) \varvec{y}) \,ds \quad \text {for all }\varvec{x},\varvec{y}\in T \end{aligned}$$

we obtain that

$$\begin{aligned} \Vert v\Vert _{T}^2&= \Vert v\Vert _{T_\mathrm {NC}}^2 = \int _{T_\mathrm {NC}} v(\varvec{x})^2 \,d\varvec{x}= \frac{1}{|T_\mathrm {C}|} \int _{T_\mathrm {NC}} \int _{T_\mathrm {C}} (v(\varvec{x})-v(\varvec{y}))^2 \,d\varvec{y}\,d\varvec{x}\\&= \frac{1}{|T_\mathrm {C}|} \int _{T_\mathrm {NC}} \int _{T_\mathrm {C}} \Big ( (\varvec{x}-\varvec{y}) \cdot \int _0^1 \nabla v(s\varvec{x}+ (1-s)\varvec{y}) \,ds \Big )^2 \\&\le \frac{h_T^2}{|T_\mathrm {C}|} \int _T \int _T \int _0^1 |\nabla v(s\varvec{x}+(1-s)\varvec{y})|^2 \,ds \,d\varvec{y}\,d\varvec{x}\\&= 2 \frac{h_T^2}{|T_\mathrm {C}|} \int _T \int _{1/2}^1 \int _T |\nabla v(s\varvec{x}+(1-s)\varvec{y})|^2 \,d\varvec{x}\,ds \,d\varvec{y}, \end{aligned}$$

where in the ultimate step we have used symmetry in \(\varvec{x}\) and \(\varvec{y}\). With the substitution \(\varvec{z}= \phi (\varvec{x}) = s\varvec{x}+ (1-s)\varvec{y}\in T\) we further get that

$$\begin{aligned} \int _T \int _{1/2}^1 \int _T |\nabla v(s\varvec{x}+(1-s)\varvec{y})|^2 \,d\varvec{x}\,ds \,d\varvec{y}&= \int _T \int _{1/2}^1 s^{-n} \int _{\phi (T)} |\nabla v(\varvec{z})|^2 \,d\varvec{z}\,ds \,d\varvec{y}\\&\le \int _T \int _{1/2}^1 s^{-n} \int _{T} |\nabla v(\varvec{z})|^2 \,d\varvec{z}\,ds \,d\varvec{y}\\ {}&= |T| \frac{1-(1/2)^{1-n}}{1-n} \Vert \nabla v\Vert _{T}^2. \end{aligned}$$

Putting altogether this proves the first inequality.

For the second inequality we use the fact that the gradient on level sets vanishes, see [13, Theorem 3.3]. This means that \(\nabla v = 0\) a.e. in \(T_\mathrm {C}\). Then, the same lines of proof as above (with v replaced by the components of \(\nabla v\)) show the second inequality, which finishes the proof.

Appendix C: Proof of Lemma 19

We consider the decompositions

$$\begin{aligned} \mathcal {J}^{k-1}&= \underbrace{\big \{j\in \mathcal {J}^{k-1}{:}\,\varvec{\lambda }_j^k > 0\big \}}_{=:\mathcal {J}_1^{k-1}} \cup \underbrace{\big \{j\in \mathcal {J}^{k-1}{:}\,\varvec{\lambda }_j^k = 0\big \}}_{=:\mathcal {J}_2^{k-1}}, \\ \mathcal {I}^{k-1}&= \underbrace{\big \{i\in \mathcal {I}^{k-1}{:}\,i\in \mathcal {N}_\omega \text { or } i\in \mathcal {N}_\gamma \text { with } \varvec{x}_i^k\ge \varvec{g}_i\big \}}_{=:\mathcal {I}_1^{k-1}} \cup \underbrace{\big \{i\in \mathcal {I}^{k-1}\cap \mathcal {N}_\gamma {:}\,\varvec{x}_i^k<\varvec{g}_i\big \}}_{=:\mathcal {I}_2^{k-1}}. \end{aligned}$$

For the decomposition of \(\mathcal {J}^k\) note that from Lines 89 of Algorithm 1 we have that \(\varvec{\lambda }_{\mathcal {N}_\gamma \cap \mathcal {I}^{k-1}} = 0\) and \(\varvec{x}_{\mathcal {J}^k} = \varvec{g}_{\mathcal {J}^k}\). This yields

$$\begin{aligned} \mathcal {J}^k = \big \{j\in \mathcal {J}^{k-1}{:}\, \varvec{\lambda }_j^k>0\big \} \cup \big \{i\in \mathcal {I}^{k-1}\cap \mathcal {N}_\gamma {:}\, \varvec{x}_i^k < \varvec{g}_i\big \} = \mathcal {J}_1^{k-1} \cup \mathcal {I}_2^{k-1} \end{aligned}$$

If \(\mathcal {J}^k = \mathcal {J}^{k-1}\), then, since all decompositions are disjoint,

$$\begin{aligned} \mathcal {I}_2^{k-1} = \emptyset = \mathcal {J}_2^{k-1}. \end{aligned}$$

This also means that \(\widehat{\varvec{\lambda }}_j^k>0\) if and only if \(\varvec{\lambda }_j^k>0\) with \(\varvec{x}_j^k = \varvec{g}_j\). Thus,

$$\begin{aligned} \varvec{\lambda }_{\mathcal {N}_\gamma }^k&= \max \{ 0,\varvec{\lambda }_{\mathcal {N}_\gamma }^k-C(\varvec{x}_{\mathcal {N}_\gamma }-\varvec{g}_{\mathcal {N}_\gamma })\}, \\ \varvec{\lambda }_{\mathcal {N}_\omega }^k&= 0, \end{aligned}$$

which implies that (18) is satisfied for \(\varvec{x}=\varvec{x}^k\), \(\varvec{\lambda }=\varvec{\lambda }^k\) or equivalently \(\varvec{x}=\varvec{x}^k\) solves (17).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Führer, T. First-order least-squares method for the obstacle problem. Numer. Math. 144, 55–88 (2020). https://doi.org/10.1007/s00211-019-01084-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-019-01084-0

Mathematics Subject Classification

Navigation