Skip to main content
Log in

An alternative to the Euler–Maclaurin summation formula: approximating sums by integrals only

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

The Euler–Maclaurin (EM) summation formula is used in many theoretical studies and numerical calculations. It approximates the sum \({\sum \nolimits _{k=0}^{n-1} f(k)}\) of values of a function f by a linear combination of a corresponding integral of f and values of its higher-order derivatives \(f^{(j)}\). An alternative (Alt) summation formula is proposed, which approximates the sum by a linear combination of integrals only, without using high-order derivatives of f. Explicit and rather easy to use bounds on the remainder are given. Extensions to multi-index summation and to sums over lattice polytopes are indicated. Applications to summing possibly divergent series are presented. The Alt formula will in most cases outperform, or greatly outperform, the EM summation formula in terms of the execution time and memory use. One of the advantages of the Alt calculations is that, in contrast with the EM ones, they can be almost completely parallelized. Illustrative examples are given. In one of the examples, where an array of values of the Hurwitz generalized zeta function is computed with high accuracy, it is shown that both our implementation of the EM summation formula and, especially, the Alt formula perform much faster than the built-in Mathematica command HurwitzZeta[].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bailey, D.H., Borwein, J.M.: Experimental mathematics: recent developments and future outlook. In: Engquist, B., Schmid, W. (eds.) Mathematics Unlimited–2001 and Beyond, pp. 51–66. Springer, Berlin (2001)

    Chapter  Google Scholar 

  2. Bornemann, F.: The SIAM 100-digit challenge: a decade later. Inspirations, ramifications, and other eddies left in its wake. Jahresber. Dtsch. Math.-Ver. 118(2), 87–123 (2016). https://doi.org/10.1365/s13291-016-0137-2

    Article  MathSciNet  MATH  Google Scholar 

  3. Bornemann, F., Laurie, D., Wagon, S., Waldvogel, J.: The SIAM 100-Digit Challenge. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2004). https://doi.org/10.1137/1.9780898717969. (A study in high-accuracy numerical computing, With a foreword by David H. Bailey)

    Book  MATH  Google Scholar 

  4. Brent, R.P.: Multiple-precision zero-finding methods and the complexity of elementary function evaluation (2010). arXiv:1004.3412, see also http://maths-people.anu.edu.au/~brent/pub/pub028.html

  5. Butzer, P.L., Ferreira, P.J.S.G., Schmeisser, G., Stens, R.L.: The summation formulae of Euler–Maclaurin, Abel–Plana, Poisson, and their interconnections with the approximate sampling formula of signal analysis. Results Math. 59(3–4), 359–400 (2011). https://doi.org/10.1007/s00025-010-0083-8

    Article  MathSciNet  MATH  Google Scholar 

  6. Candelpergher, B., Gadiyar, H.G., Padma, R.: Ramanujan summation and the exponential generating function \(\sum ^\infty_{k=0}{z^k\over k!}\zeta ^{\prime }(-k)\). Ramanujan J. 21(1), 99–122 (2010). https://doi.org/10.1007/s11139-009-9166-0

    Article  MathSciNet  MATH  Google Scholar 

  7. Fillebrown, S.: Faster computation of Bernoulli numbers. J. Algorithms 13(3), 431–445 (1992). https://doi.org/10.1016/0196-6774(92)90048-H

    Article  MathSciNet  MATH  Google Scholar 

  8. Gould, H.W.: Explicit formulas for Bernoulli numbers. Am. Math. Mon. 79, 44–51 (1972). https://doi.org/10.2307/2978125

    Article  MathSciNet  MATH  Google Scholar 

  9. Harvey, D.: A multimodular algorithm for computing Bernoulli numbers. Math. Comput. 79(272), 2361–2370 (2010). https://doi.org/10.1090/S0025-5718-2010-02367-1

    Article  MathSciNet  MATH  Google Scholar 

  10. Ierley, G.: Private communication (2017)

  11. Ireland, K., Rosen, M.: A Classical Introduction to Modern Number Theory Graduate Texts in Mathematics, vol. 84, 2nd edn. Springer, New York (1990). https://doi.org/10.1007/978-1-4757-2103-4

    Book  MATH  Google Scholar 

  12. Kleinert, H.: Path integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, 5th edn. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2009). https://doi.org/10.1142/9789814273572

    Book  MATH  Google Scholar 

  13. Knopp, K.: Theory and Application of Infinite Series. Blackie, London (1951)

    MATH  Google Scholar 

  14. Knuth, D.E.: Euler’s constant to \(1271\) places. Math. Comput. 16, 275–281 (1962)

    MathSciNet  MATH  Google Scholar 

  15. MathOverflow: a representation of the Bernoulli numbers. http://mathoverflow.net/questions/252404/a-representation-of-the-bernoulli-numbers#252410 (2016)

  16. Pinelis, I.: An alternative to the Euler–Maclaurin formula: approximating sums by integrals only (2015). arXiv:1511.03247 [math.CA]

  17. Pinelis, I.: Approximating sums by integrals only: multiple sums and sums over lattice polytopes (2017). arXiv:1705.09159 [math.CA]

  18. Sadovskii, M.V.: Quantum Field Theory, De Gruyter Studies in Mathematical Physics, vol. 17. De Gruyter, Berlin (2013). https://doi.org/10.1515/9783110270358

    Book  Google Scholar 

  19. Titchmarsh, E.C.: The Theory of Functions. Oxford University Press, Oxford (1958). (Reprint of the second (1939) edition)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iosif Pinelis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinelis, I. An alternative to the Euler–Maclaurin summation formula: approximating sums by integrals only. Numer. Math. 140, 755–790 (2018). https://doi.org/10.1007/s00211-018-0978-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-018-0978-y

Mathematics Subject Classification

Navigation