Skip to main content
Log in

Uniform-in-time bounds for approximate solutions of the drift–diffusion system

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this paper, we consider a numerical approximation of the Van Roosbroeck’s drift–diffusion system given by a backward Euler in time and finite volume in space discretization, with Scharfetter–Gummel fluxes. We first propose a proof of existence of a solution to the scheme which does not require any assumption on the time step. The result relies on the application of a topological degree argument which is based on the positivity and on uniform-in-time upper bounds of the approximate densities. Secondly, we establish uniform-in-time lower bounds satisfied by the approximate densities. These uniform-in-time upper and lower bounds ensure the exponential decay of the scheme towards the thermal equilibrium as shown in Bessemoulin-Chatard (Numer Math 25(3):147–168, 2016).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Alikakos, N.D.: \(L^{p}\) bounds of solutions of reaction–diffusion equations. Comm. Partial Differ. Equ. 4(8), 827–868 (1979)

    Article  MATH  Google Scholar 

  2. Angermann, L.: A mass-lumping semidiscretization of the semiconductor device equations. I. Properties of the semidiscrete problem. COMPEL 8(2), 65–105 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bessemoulin-Chatard, M., Chainais-Hillairet, C.: Exponential decay of a finite volume scheme to the thermal equilibrium for drift–diffusion systems. J. Numer. Math. 25(3), 147–168 (2016)

    MathSciNet  MATH  Google Scholar 

  4. Bessemoulin-Chatard, M., Chainais-Hillairet, C., Filbet, F.: On discrete functional inequalities for some finite volume schemes. IMA J. Numer. Anal. 35(3), 1125–1149 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bessemoulin-Chatard, M., Chainais-Hillairet, C., Jüngel, A.: Uniform \(L^{\infty }\) estimates for approximate solutions of the bipolar drift–diffusion system. In: Finite Volumes for Complex Applications VIII, Springer Proceedings in Mathematics. Springer, Berlin (2017)

  6. Bessemoulin-Chatard, M., Chainais-Hillairet, C., Vignal, M.-H.: Study of a finite volume scheme for the drift–diffusion system. Asymptotic behavior in the quasi-neutral limit. SIAM J. Numer. Anal. 52(4), 1666–1691 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brezzi, F., Marini, L.D., Pietra, P.: Two-dimensional exponential fitting and applications to drift–diffusion models. SIAM J. Numer. Anal. 26(6), 1342–1355 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chainais-Hillairet, C., Filbet, F.: Asymptotic behavior of a finite volume scheme for the transient drift–diffusion model. IMA J. Numer. Anal. 27(4), 689–716 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chainais-Hillairet, C., Herda, M.: Large-time behavior of a family of finite volume schemes for boundary-driven convection–diffusion equations. (2018). arXiv:1810.01087

  10. Chainais-Hillairet, C., Liu, J.-G., Peng, Y.-J.: Finite volume scheme for multi-dimensional drift–diffusion equations and convergence analysis. M2AN Math. Model. Numer. Anal. 37(2), 319–338 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chatard, M.: Asymptotic behavior of the Scharfetter–Gummel scheme for the drift–diffusion model. In: Fořt, J., Fürst, J., Halama, J., Herbin, R., Hubert, F (eds.) Finite Volumes for Complex Applications VI Problems and Perspectives, volume 4 of Springer Proceedings in Mathematics, pp. 235–243. Springer, Berlin (2011)

  12. Chen, Z., Cockburn, B.: Analysis of a finite element method for the drift–diffusion semiconductor device equations: the multidimensional case. Numer. Math. 71(1), 1–28 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Coughran Jr., W.M., Jerome, J.W.: Modular algorithms for transient semiconductor device simulation. I. Analysis of the outer iteration. In: Computational aspects of VLSI design with an emphasis on semiconductor device simulation (Minneapolis, MN, 1987), volume 25 of Lectures in Appl. Math., pp. 107–149. Am. Math. Soc., Providence, RI (1990)

  14. Deimling, K.: Nonlinear Functional Analysis. Springer, Berlin (1985)

    Book  MATH  Google Scholar 

  15. Di Francesco, M., Fellner, K., Markowich, P.A.: The entropy dissipation method for spatially inhomogeneous reaction–diffusion-type systems. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 464(2100), 3273–3300 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. In: Handbook of numerical analysis, vol. VII, pp. 713–1020. North-Holland, Amsterdam (2000)

  17. Fiebach, A., Glitzky, A., Linke, A.: Uniform global bounds for solutions of an implicit Voronoi finite volume method for reaction–diffusion problems. Numer. Math. 128, 31–72 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Filbet, F., Herda, M.: A finite volume scheme for boundary-driven convection-diffusion equations with relative entropy structure. Numer. Math. 137(3), 535–577 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gajewski, H., Gärtner, K.: On the discretization of Van Roosbroeck’s equations with magnetic field. Z. Angew. Math. Mech. 76(5), 247–264 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gajewski, H., Gröger, K.: On the basic equations for carrier transport in semiconductors. J. Math. Anal. Appl. 113, 12–35 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gajewski, H., Gröger, K.: Semiconductor equations for variable mobilities based on Boltzmann statistics or Fermi-Dirac statistics. Math. Nachr. 140, 7–36 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gajewski, H., Gröger, K.: Initial-boundary value problems modelling heterogeneous semiconductor devices. In: Surveys on Analysis, Geometry and Mathematical Physics, volume 117 of Teubner-Texte Math., pp. 4–53. Teubner, Leipzig (1990)

  23. Gajewski, H., Gröger, K.: Reaction–diffusion processes of electrically charged species. Math. Nachr. 177, 109–130 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gärtner, K.: Existence of bounded discrete steady-state solutions of the Van Roosbroeck system on boundary conforming delaunay grids. SIAM J. Sci. Comput. 31(2), 1347–1362 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order, volume 224 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 2nd ed. Springer, Berlin (1983)

  26. Il’In, A.M.: A difference scheme for a differential equation with a small parameter multiplying the highest derivative. Math. Zametki 6, 237–248 (1969)

    MathSciNet  Google Scholar 

  27. Kowalczyk, R.: Preventing blow-up in a chemotaxis model. J. Math. Anal. Appl. 305(2), 566–588 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lazarov, R.D., Mishev, I.D., Vassilevski, P.S.: Finite volume methods for convection–diffusion problems. SIAM J. Numer. Anal. 33(1), 31–55 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  29. Markowich, P.A., Ringhofer, C.A., Schmeiser, C.: Semiconductor Equations. Springer, Vienna (1990)

    Book  MATH  Google Scholar 

  30. Mock, M.S.: An initial value problem from semiconductor device theory. SIAM J. Math. Anal. 5, 597–612 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  31. Moser, J.: A new proof of de Giorgi’s theorem concerning the regularity problem for elliptic differential equations. Commun. Pure Appl. Math. 13(3), 457–468 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sacco, R., Saleri, F.: Mixed finite volume methods for semiconductor device simulation. Numer. Methods Partial Differ. Equ. 13(3), 215–236 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  33. Scharfetter, D.L., Gummel, H.K.: Large signal analysis of a silicon Read diode. IEEE Trans. Electr. Dev. 16, 64–77 (1969)

    Article  Google Scholar 

  34. Van Roosbroeck, W.: Theory of the flow of electrons and holes in germanium and other semiconductors. Bell Syst. Tech. J. 29, 560–607 (1950)

    Article  MATH  Google Scholar 

  35. Wu, H., Jiang, J.: Global solution to the drift–diffusion–Poisson system for semiconductors with nonlinear recombination–generation rate. Asymptot. Anal. 85(1–2), 75–105 (2013)

    MathSciNet  MATH  Google Scholar 

  36. Wu, H., Markowich, P.A., Zheng, S.: Global existence and asymptotic behavior for a semiconductor drift–diffusion–Poisson model. Math. Models Methods Appl. Sci. 18(3), 443–487 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bessemoulin-Chatard.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Some technical results

Appendix: Some technical results

In this Appendix, we detail some technical results which we use in the paper. There are first functional inequalities and then some properties of the numerical fluxes.

We define \(x^+=\max (x,0)\) and \(x^-=\min (x,0)\) for all \(x\in {\mathbb {R}}\). Let us first recall some elementary inequalities:

$$\begin{aligned}&\forall x,y\in {\mathbb {R}},\forall q\ge 1,\quad x\left( (x^+)^q-(y^+)^q\right) \ge x^+\left( (x^+)^q-(y^+)^q\right) , \end{aligned}$$
(66)
$$\begin{aligned}&\forall x,y\ge 0,\forall \alpha ,\beta >0\quad (y^{\alpha }-x^{\alpha })(y^{\beta }-x^{\beta })\ge \frac{4\alpha \beta }{(\alpha +\beta )^2}\left( y^{\frac{\alpha +\beta }{2}}-x^{\frac{\alpha +\beta }{2}}\right) ^2, \end{aligned}$$
(67)
$$\begin{aligned}&\forall x,y\ge 0,\forall q\ge 2,\quad y^q-x^q\ge q x^{q-1}(y-x) \end{aligned}$$
(68)

For \({{\overline{m}}}\in {\mathbb {R}}\), we can define the function \(w_{{{\overline{m}}}}\) by \(w_{{{\overline{m}}}} (x)= (\log x+{{\overline{m}}})^-\) for all \(x\in {\mathbb {R}}_+^*\). This function is widely used for the proof of the uniform-in-time positive lower bound in Sect. 3. We give in Lemma 3 some properties of the function \(w_{{\overline{m}}}\).

Lemma 3

Let \({{\overline{m}}}\in {\mathbb {R}}\), the function \(w_{{{\overline{m}}}}\) defined by \(w_{{{\overline{m}}}} (x)= -(\log x+{{\overline{m}}})^-\) for all \(x\in {\mathbb {R}}_+^*\) verifies the following inequalities:

  • For all \(q\ge 2\), for all \(x,\, y>0\),

    $$\begin{aligned} -\frac{x-y}{x}\bigl (w_{{\overline{m}}}(x)\bigl )^{q-1}\ge \frac{1}{q}\Bigl (\bigl (w_{{\overline{m}}}(x)\bigl )^q-\bigl (w_{{\overline{m}}}(y)\bigl )^q\Bigl ). \end{aligned}$$
    (69)
  • For all \(q\ge 2\), for all \(x,\, y>0\),

    $$\begin{aligned} x\left( \frac{\left( w_{{\overline{m}}}(y)\right) ^{q-1}}{y}-\frac{\left( w_{{\overline{m}}}(x)\right) ^{q-1}}{x}\right)&\ge \left( w_{{\overline{m}}}(y)\right) ^{q-1}-\left( w_{{\overline{m}}}(x)\right) ^{q-1} \nonumber \\&\quad +\frac{1}{q}\left( \left( w_{{\overline{m}}}(y)\right) ^{q}-\left( w_{{\overline{m}}}(x)\right) ^{q}\right) . \end{aligned}$$
    (70)

Proof

We start with the proof of (69). It is trivial when \(x=y\). We consider the case where \(x\ne y\). We remark that:

$$\begin{aligned}&-(x-y)\bigl (w_{{\overline{m}}}(x)\bigl )^{q-1} \\&\quad =-\displaystyle \frac{x-y}{\log x -\log y}\bigl (\log x-\log y\bigl )\bigl (w_{{\overline{m}}}(x)\bigl )^{q-1}\\&\quad =\displaystyle \frac{x-y}{\log x -\log y}\Bigl (-(\log x+{{\overline{m}}})^+ +w_{{\overline{m}}}(x)+(\log y+{{\overline{m}}})^+-w_{{\overline{m}}}(y)\Bigl )\bigl (w_{{\overline{m}}}(x)\bigl )^{q-1}. \end{aligned}$$

Therefore,

$$\begin{aligned} -(x-y)\bigl (w_{{\overline{m}}}(x)\bigl )^{q-1}\ge \displaystyle \frac{x-y}{\log x -\log y}\bigl (w_{{\overline{m}}}(x)-w_{{\overline{m}}}(y)\bigl )\bigl (w_{{\overline{m}}}(x)\bigl )^{q-1}. \end{aligned}$$

But, on one hand the function \(w_{{\overline{m}}}\) is a nonincreasing function and on the other hand, we have:

$$\begin{aligned} \displaystyle \frac{1}{x}\frac{x-y}{\log x -\log y} > 1 \Longleftrightarrow 0<x< y. \end{aligned}$$

This yields

$$\begin{aligned} -\frac{x-y}{x}\bigl (w_{{\overline{m}}}(x)\bigl )^{q-1}\ge \bigl (w_{{\overline{m}}}(x)-w_{{\overline{m}}}(y)\bigl )\bigl (w_{{\overline{m}}}(x)\bigl )^{q-1}. \end{aligned}$$

The inequality (69) is then deduced from (68).

Let us now prove (70). We first remark that

$$\begin{aligned} x\left( \frac{\left( w_{{\overline{m}}}(y)\right) ^{q-1}}{y}-\frac{\left( w_{{\overline{m}}}(x) \right) ^{q-1}}{x}\right) = \left( w_{{\overline{m}}}(y)\right) ^{q-1}-\left( w_{{\overline{m}}}(x)\right) ^{q-1}+\left( w_{{\overline{m}}}(y) \right) ^{q-1}\left( \frac{x}{y}-1\right) . \end{aligned}$$

Thus, we just need to prove:

$$\begin{aligned} \left( w_{{\overline{m}}}(y)\right) ^{q-1}\left( \frac{x}{y}-1\right) \ge \frac{1}{q}\Bigl (\left( w_{{\overline{m}}}(y)\right) ^{q}-\left( w_{{\overline{m}}}(x)\right) ^{q}\Bigl ),\ \forall x,y>0. \end{aligned}$$
(71)

If \(y\ge e^{-{{\overline{m}}}}\), \(w_{{\overline{m}}}(y)=0\) and the result holds for all \(x>0\). We consider now the case where \(y<e^{-{{\overline{m}}}}\). As a direct consequence of (68), we get:

$$\begin{aligned} \Bigl (\bigl (w_{{\overline{m}}}(y)\bigl )^q-\bigl (w_{{\overline{m}}}(x))^q\bigl )\Bigl )\le q \bigl (w_{{\overline{m}}}(y)\bigl )^{q-1}\bigl (w_{{\overline{m}}}(y)-w_{{\overline{m}}}(x)\bigl ). \end{aligned}$$

But, for all \(x>0\), we have:

$$\begin{aligned} w_{{\overline{m}}}(y)-w_{{\overline{m}}}(x)\le -\log y+\log x\le \displaystyle \frac{x-y}{y}, \end{aligned}$$

which yields (71) and therefore (70). \(\square \)

We now establish some properties satisfied by the numerical fluxes. Lemma 4 is crucial for the proof of Proposition 4, while Lemma 5 is used in the proof of Proposition 5.

Lemma 4

Let \(q\ge 1\). The numerical fluxes defined by (15), (16) and (17) verify that for all \(K\in {\mathcal {T}}\), for all \(\sigma \in {\mathcal {E}}_K\), for all \(n\ge 0\),

$$\begin{aligned} {{\mathcal {F}}}_{K,\sigma }^{n+1} D_{K,\sigma }(N_M^{n+1})^q&\le -\frac{4q}{(q+1)^2} \tau _{\sigma }B(D_{\sigma }\Psi ^{n+1}) \left( D_{K,\sigma }(N_M^{n+1})^{\frac{q+1}{2}}\right) ^2\nonumber \\&\quad +\frac{q}{q+1} \tau _{\sigma }D_{K,\sigma }\Psi ^{n+1}D_{K,\sigma }(N_M^{n+1})^{q+1} \nonumber \\&\quad +M\tau _{\sigma }D_{K,\sigma }\Psi ^{n+1}D_{K,\sigma }(N_M^{n+1})^q, \end{aligned}$$
(72a)
$$\begin{aligned} {{\mathcal {G}}}_{K,\sigma }^{n+1}D_{K,\sigma }(P_M^{n+1})^q&\le -\frac{4q}{(q+1)^2} \tau _{\sigma }B(D_{\sigma }\Psi ^{n+1}) \left( D_{K,\sigma }(P_M^{n+1})^{\frac{q+1}{2}}\right) ^2\nonumber \\&\quad -\frac{q}{q+1} \tau _{\sigma }D_{K,\sigma }\Psi ^{n+1}D_{K,\sigma }(P_M^{n+1})^{q+1} \nonumber \\&\quad -M\tau _{\sigma }D_{K,\sigma }\Psi ^{n+1}D_{K,\sigma }(P_M^{n+1})^q. \end{aligned}$$
(72b)

Proof

We prove only inequality (72a) since (72b) can be deduced by replacing \(D_{K,\sigma }\Psi ^{n+1}\) by \(- D_{K,\sigma }\Psi ^{n+1}\). Using the property \(B(x)-B(-x)=-x\) satisfied by the function B, we can rewrite the fluxes \({\mathcal F}_{K,\sigma }^{n+1}\) under two different forms:

$$\begin{aligned} {\mathcal F}_{K,\sigma }^{n+1}&=\tau _{\sigma }\left( D_{K,\sigma }\Psi ^{n+1}N_{K}^{n+1} -B(D_{K,\sigma }\Psi ^{n+1})D_{K,\sigma }N^{n+1}\right) \end{aligned}$$
(73a)
$$\begin{aligned}&=\tau _{\sigma }\left( D_{K,\sigma }\Psi ^{n+1}N_{K,\sigma }^{n+1} -B(-D_{K,\sigma }\Psi ^{n+1})D_{K,\sigma }N^{n+1}\right) . \end{aligned}$$
(73b)

With the formulation (73a), we write:

$$\begin{aligned} {{\mathcal {F}}}_{K,\sigma }^{n+1} D_{K,\sigma }(N_M^{n+1})^q&=\tau _{\sigma }\left( D_{K,\sigma }\Psi ^{n+1}(N_{K}^{n+1}-M)D_{K,\sigma }(N_M^{n+1})^q\right. \\&\quad \qquad + MD_{K,\sigma }\Psi ^{n+1}D_{K,\sigma }(N_M^{n+1})^q \\&\quad \qquad \left. -B(D_{K,\sigma }\Psi ^{n+1})D_{K,\sigma }N^{n+1}D_{K,\sigma }(N_M^{n+1})^q\right) . \end{aligned}$$

But, using (66) and (67), we get:

$$\begin{aligned} (N_{K}^{n+1}-M)D_{K,\sigma }(N_M^{n+1})^q&\le \frac{q}{q+1} D_{K,\sigma }(N_M^{n+1})^{q+1},\\ DN_{K,\sigma }^{n+1}D_{K,\sigma }(N_M^{n+1})^q&\ge \frac{4q}{(q+1)^2} \left( D_{K,\sigma }(N_M^{n+1})^{\frac{q+1}{2}}\right) ^2. \end{aligned}$$

Moreover, B is a nonnegative function. Then, we deduce (72a) if \(D_{K,\sigma }\Psi ^{n+1}\ge 0\). The same result is obtained when \(D_{K,\sigma }\Psi ^{n+1}\le 0\) but starting with (73b) instead of (73a). \(\square \)

Lemma 5

Let \(q\ge 2\). Let \({{\overline{m}}}\in {\mathbb {R}}\), we set \(w_K^{n+1}=w_{{{\overline{m}}}}(N_K^{n+1})\) for all \(K\in {\mathcal {T}}\), for all \(n\ge 0\). The numerical fluxes defined by (15) and (17) verify that for all \(K\in {\mathcal {T}}\), for all \(\sigma \in {\mathcal {E}}_K\), for all \(n\ge 0\),

$$\begin{aligned}&{{\mathcal {F}}}_{K,\sigma }^{n+1}D_{K,\sigma }\left( (w^{n+1})^{q-1}\frac{1}{N^{n+1}}\right) \nonumber \\&\quad \ge \tau _{\sigma }D_{K,\sigma }\Psi ^{n+1}\left( D_{K,\sigma }(w^{n+1})^{q-1} +\frac{1}{q}D_{K,\sigma }(w^{n+1})^{q}\right) \nonumber \\&\qquad +\tau _{\sigma }B\left( D_{\sigma }\Psi ^{n+1}\right) \left( \frac{4(q-1)}{q^{2}} \left( D_{\sigma }(w^{n+1})^{q/2}\right) ^{2} +\frac{1}{(q+1)^{2}}\left( D_{\sigma }(w^{n+1})^{\frac{q+1}{2}}\right) ^{2}\right) . \end{aligned}$$
(74)

Proof

We first assume that \(D_{K,\sigma }\Psi ^{n+1}\ge 0\). Using formulation (73a), we write

$$\begin{aligned} {{\mathcal {F}}}_{K,\sigma }^{n+1}D_{K,\sigma }\left( (w^{n+1})^{q-1}\frac{1}{N^{n+1}}\right) =R_{1}+R_{2}, \end{aligned}$$

with

$$\begin{aligned} R_{1}&=-\tau _{\sigma }B\left( D_{\sigma }\Psi ^{n+1}\right) D_{K,\sigma }N^{n+1} D_{K,\sigma }\left( (w^{n+1})^{q-1}\frac{1}{N^{n+1}}\right) ,\\ R_{2}&=\tau _{\sigma }D_{K,\sigma }\Psi ^{n+1}N_K^{n+1}D_{K,\sigma }\left( (w^{n+1})^{q-1} \frac{1}{N^{n+1}}\right) . \end{aligned}$$

We treat \(R_{1}\) following the same computations as those used in [17, proof of Theorem 4] for the diffusion term. More precisely, we have

$$\begin{aligned} R_{1}=\tau _{\sigma }B\left( D_{\sigma }\Psi ^{n+1}\right) (R_{11}+R_{12}), \end{aligned}$$

with

$$\begin{aligned} R_{11}&=-D_{K,\sigma }N^{n+1}\frac{1}{2}D_{K,\sigma }\left( (w^{n+1})^{q-1} \right) \left( \frac{1}{N_K^{n+1}}+\frac{1}{N_{K,\sigma }^{n+1}}\right) ,\\ R_{12}&=-D_{K,\sigma }N^{n+1}\frac{1}{2}D_{K,\sigma }\left( \frac{1}{N^{n+1}} \right) \left( (w_{K}^{n+1})^{q-1}+(w_{K,\sigma }^{n+1})^{q-1}\right) . \end{aligned}$$

According to [17, Lemma 7], we can rewrite \(R_{11}\) and \(R_{12}\) respectively as:

$$\begin{aligned} \begin{aligned} R_{11}&=-f\left( D_{K,\sigma }\left( \log N^{n+1}\right) \right) D_{K,\sigma } \left( \log N^{n+1}+{\overline{m}}\right) D_{K,\sigma }(w^{n+1})^{q-1},\\ R_{12}&=g\left( D_{K,\sigma }\left( \log N^{n+1}\right) \right) \left( D_{K,\sigma } \left( \log N^{n+1}+{\overline{m}}\right) \right) ^{2}\frac{1}{2} \left( (w_{K}^{n+1})^{q-1}+(w_{K,\sigma }^{n+1})^{q-1}\right) , \end{aligned} \end{aligned}$$

with

$$\begin{aligned} \begin{aligned} f(z)&=\frac{(e^{z}-1)(e^{-z}+1)}{2z}\ge 1,\quad \forall z\in {\mathbb {R}},\\ g(z)&=-\frac{(e^{z}-1)(e^{-z}-1)}{z^{2}}\ge 1,\quad \forall z\in {\mathbb {R}}. \end{aligned} \end{aligned}$$

Moreover, using the definition of \(w_{{\mathcal {T}}}^{n+1}\) and (67) with \(\alpha =1\) and \(\beta =q-1\), we have:

$$\begin{aligned} -D_{K,\sigma }\left( \log N^{n+1}+{\overline{m}}\right) D_{K,\sigma }(w^{n+1})^{q-1}&=-D_{K,\sigma }\left( (\log N^{n+1}+{\overline{m}})^{+}\right) D_{K,\sigma }(w^{n+1})^{q-1}\\&\quad +D_{K,\sigma }(w^{n+1})D_{K,\sigma }(w^{n+1})^{q-1}\\&\ge \frac{4(q-1)}{q^{2}}\left( D_{K,\sigma }(w^{n+1})^{q/2}\right) ^{2}. \end{aligned}$$

Then we get

$$\begin{aligned} R_{11}\ge \frac{4(q-1)}{q^{2}}\left( D_{K,\sigma }(w^{n+1})^{q/2}\right) ^{2}. \end{aligned}$$
(75)

We also have

$$\begin{aligned} R_{12}\ge \frac{1}{2}\left( D_{K,\sigma }w^{n+1}\right) ^{2} \left( (w_{K}^{n+1})^{q-1}+(w_{K,\sigma }^{n+1})^{q-1}\right) , \end{aligned}$$

and since for all \(x,\,y\ge 0\) we have, as shown in [17, Lemma 6],

$$\begin{aligned} (x-y)^{2}(x^{q-1}+y^{q-1})\ge \frac{2}{(q+1)^{2}}\left( x^{\frac{q+1}{2}}-y^{\frac{q+1}{2}}\right) ^{2}, \end{aligned}$$

which yields

$$\begin{aligned} R_{12}\ge \frac{1}{(q+1)^{2}}\left( D_{K,\sigma }(w^{n+1})^{\frac{q+1}{2}}\right) ^{2}. \end{aligned}$$
(76)

Gathering (75) and (76), we finally deduce that

$$\begin{aligned} R_{1}\ge & {} \tau _{\sigma }B\left( D_{\sigma }\Psi ^{n+1}\right) \nonumber \\&\left( \frac{4(q-1)}{q^{2}} \left( D_{K,\sigma }(w^{n+1})^{q/2}\right) ^{2}+ \frac{1}{(q+1)^{2}}\left( D_{K,\sigma }(w^{n+1})^{\frac{q+1}{2}}\right) ^{2}\right) . \end{aligned}$$
(77)

The term \(R_{2}\) is now treated using (70) from Lemma 3 with \(x=N_K^{n+1}\) and \(y=N_{K,\sigma }^{n+1}\) (we still assume that \(D_{K,\sigma }\Psi ^{n+1}\ge 0\)). We get:

$$\begin{aligned} R_{2}\ge \tau _{\sigma }D_{K,\sigma }\Psi ^{n+1}\left( D_{K,\sigma }(w^{n+1})^{q-1} +\frac{1}{q}D_{K,\sigma }(w^{n+1})^{q}\right) . \end{aligned}$$
(78)

Gathering (77) and (78) yields the result if \(D_{K,\sigma }\Psi ^{n+1}\ge 0\). The case \(D_{K,\sigma }\Psi ^{n+1}\le 0\) can be treated exactly in the same way, starting from the expression (73b) of the flux instead of (73a). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bessemoulin-Chatard, M., Chainais-Hillairet, C. Uniform-in-time bounds for approximate solutions of the drift–diffusion system. Numer. Math. 141, 881–916 (2019). https://doi.org/10.1007/s00211-018-01019-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-018-01019-1

Mathematics Subject Classification

Navigation