Skip to main content
Log in

Uniform-in-time convergence of numerical methods for non-linear degenerate parabolic equations

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

Gradient schemes is a framework that enables the unified convergence analysis of many numerical methods for elliptic and parabolic partial differential equations: conforming and non-conforming finite element, mixed finite element and finite volume methods. We show here that this framework can be applied to a family of degenerate non-linear parabolic equations (which contain in particular the Richards’, Stefan’s and Leray–Lions’ models), and we prove a uniform-in-time strong-in-space convergence result for the gradient scheme approximations of these equations. In order to establish this convergence, we develop several discrete compactness tools for numerical approximations of parabolic models, including a discontinuous Ascoli–Arzelà theorem and a uniform-in-time weak-in-space discrete Aubin–Simon theorem. The model’s degeneracies, which occur both in the time and space derivatives, also requires us to develop a discrete compensated compactness result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aavatsmark, I., Barkve, T., Boe, O., Mannseth, T.: Discretization on non-orthogonal, quadrilateral grids for inhomogeneous, anisotropic media. J. Comput. Phys. 127(1), 2–14 (1996)

    Article  MATH  Google Scholar 

  2. Akrivis, G., Makridakis, C., Nochetto, R.H.: Optimal order a posteriori error estimates for a class of Runge-Kutta and Galerkin methods. Numer. Math. 114(1), 133–160 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Akrivis, G., Makridakis, C., Nochetto, R.H.: Galerkin and Runge-Kutta methods: unified formulation, a posteriori error estimates and nodal superconvergence. Numer. Math. 118(3), 429–456 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Amann, H.: Compact embeddings of vector-valued Sobolev and Besov spaces. Glas. Mat. Ser. III 35(55), 161–177 (2000). (dedicated to the memory of Branko Najman)

    MathSciNet  MATH  Google Scholar 

  5. Andreianov, B., Boyer, F., Hubert, F.: Discrete duality finite volume schemes for Leray–Lions-type elliptic problems on general 2D meshes. Numer. Methods Partial Differ. Equ. 23(1), 145–195 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Andreianov, B., Cancès C., Moussa, A.: A nonlinear time compactness result and applications to discretization of degenerate parabolic-elliptic PDEs. HAL: hal-01142499 (2015) (submitted)

  7. Attouch, H., Buttazzo, G., Michaille, G.: Variational Analysis in Sobolev and BV Spaces, vol 6. MPS/SIAM Series on Optimization. Society for Industrial and Applied Mathematics (SIAM), Mathematical Programming Society (MPS), Philadelphia, Philadelphia (2006)

  8. Bertsch, M., De Mottoni, P., Peletier, L.: The Stefan problem with heating: appearance and disappearance of a mushy region. Trans. Am. Math. Soc 293, 677–691 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics, vol. 15. Springer, New York (1991)

    Book  MATH  Google Scholar 

  10. Brezzi, F., Lipnikov, K., Simoncini, V.: A family of mimetic finite difference methods on polygonal and polyhedral meshes. Math. Models Methods Appl. Sci. 15(10), 1533–1551 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, X., Jüngel, A., Liu, J.-G.: A note on Aubin–Lions–Dubinskiĭ lemmas. Acta Appl. Math. 133, 33–43 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ciarlet, P.: The finite element method. In: Ciarlet, P.G., Lions, J.-L. (eds.) Part I, Handbook of Numerical Analysis. III. North-Holland, Amsterdam (1991)

    Google Scholar 

  13. Coudière, Y., Hubert, F.: A 3d discrete duality finite volume method for nonlinear elliptic equations. SIAM J. Sci. Comput. 33(4), 1739–1764 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Crouzeix, M., Raviart, P.-A.: onforming and nonconforming finite element methods for solving the stationary Stokes equations. I. Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 7(R–3), 33–75 (1973)

    MathSciNet  MATH  Google Scholar 

  15. Deimling, K.: Nonlinear Functional Analysis. Springer, Berlin (1985)

    Book  MATH  Google Scholar 

  16. Diaz, J., de Thelin, F.: On a nonlinear parabolic problem arising in some models related to turbulent flows. SIAM J. Math. Anal. 25(4), 1085–1111 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dreher, M., Jüngel, A.: Compact families of piecewise constant functions in \(L^p(0, T;B)\). Nonlinear Anal. 75(6), 3072–3077 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Droniou, J.: Intégration et espaces de sobolev à valeurs vectorielles. Polycopiés de l’Ecole Doctorale de Mathématiques-Informatique de Marseille. http://www-gm3.univ-mrs.fr/polys (2001). Accessed 15 Jan 2015

  19. Droniou, J.: Finite volume schemes for fully non-linear elliptic equations in divergence form. ESAIM Math. Model. Numer. Anal. 40(6), 1069 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Droniou, J., Eymard, R.: A mixed finite volume scheme for anisotropic diffusion problems on any grid. Numer. Math. 105(1), 35–71 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Droniou, J., Eymard, R., Gallouët, T., Guichard, C., Herbin, R.: Gradient schemes for elliptic and parabolic problems (2015) (in preparation)

  22. Droniou, J., Eymard, R., Gallouët, T., Herbin, R.: A unified approach to mimetic finite difference, hybrid finite volume and mixed finite volume methods. Math. Models Methods Appl. Sci. 20(2), 265–295 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Droniou, J., Eymard, R., Gallouët, T., Herbin, R.: Gradient schemes: a generic framework for the discretisation of linear, nonlinear and nonlocal elliptic and parabolic equations. Math. Models Methods Appl. Sci. (M3AS) 23(13), 2395–2432 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Droniou, J., Eymard, R., Guichard, C.: Uniform-in-time convergence of numerical schemes for Richards’ and Stefan’s models. In: Finite Volumes for Complex Applications VII, Springer (2014)

  25. Edwards, M.G., Rogers, C.F.: Finite volume discretization with imposed flux continuity for the general tensor pressure equation. Comput. Geosci. 2(4), 259–290 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ekeland, I., Témam, R.: Convex Analysis and Variational Problems, vol. 28. Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, (1999) (english edition, translated from the French)

  27. Ern, A., Guermond, J.-L.: Theory and Practice of Finite Elements. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  28. Eymard, R., Feron, P., Gallouët, T., Herbin, R., Guichard, C.: Gradient schemes for the Stefan problem. Int. J. Finite Vol. 10s (2013)

  29. Eymard, R., Gallouët, T., Herbin, R.: Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: a scheme using stabilization and hybrid interfaces. IMA J. Numer. Anal. 30(4), 1009–1043 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Eymard, R., Gallouët, T., Hilhorst, D., Naït Slimane, Y.: Finite volumes and nonlinear diffusion equations. RAIRO Modél. Math. Anal. Numér. 32(6):747–761 (1998)

  31. Eymard, R., Guichard, C., Herbin, R.: Small-stencil 3d schemes for diffusive flows in porous media. M2AN 46, 265–290 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Eymard, R., Guichard, C., Herbin, R., Masson, R.: Gradient schemes for two-phase flow in heterogeneous porous media and Richards equation. ZAMM Z. Angew. Math. Mech. 94(7–8), 560–585 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Eymard, R., Gutnic, M., Hilhorst, D.: The finite volume method for Richards equation. Comput. Geosci. 3(3–4), 259–294 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  34. Eymard, R., Herbin, R.: Gradient scheme approximations for diffusion problems. In: Finite Volumes for Complex Applications VI Problems and Perspectives, pp. 439–447 (2011)

  35. Eymard, R., Herbin, R., Michel, A.: Mathematical study of a petroleum-engineering scheme. M2AN Math. Model. Numer. Anal. 37(6), 937–972 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  36. Gallouët, T., Latché, J.-C.: Compactness of discrete approximate solutions to parabolic PDEs–application to a turbulence model. Commun. Pure Appl. Anal. 11(6), 2371–2391 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. Glowinski, R., Rappaz, J.: Approximation of a nonlinear elliptic problem arising in a non-newtonian fluid flow model in glaciology. M2AN Math. Model. Numer. Anal. 37(1), 175–186 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  38. González, C., Ostermann, A., Palencia, C., Thalhammer, M.: Backward Euler discretization of fully nonlinear parabolic problems. Math. Comput. 71(237), 125–145 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  39. Gwinner, J., Thalhammer, M.: Full discretisations for nonlinear evolutionary inequalities based on stiffly accurate Runge-Kutta and \(hp\)-finite element methods. Found. Comput. Math. 14(5), 913–949 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  40. Hermeline, F.: Approximation of diffusion operators with discontinuous tensor coefficients on distorted meshes. Comput. Methods Appl. Mech. Eng. 192(16), 1939–1959 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  41. Kazhikhov, A.V.: Recent developments in the global theory of two-dimensional compressible Navier–Stokes equations. Seminar on Mathematical Sciences, vol. 25. Keio University,Department of Mathematics, Yokohama (1998)

  42. Lubich, C., Ostermann, A.: Runge-Kutta methods for parabolic equations and convolution quadrature. Math. Comput. 60(201), 105–131 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  43. Lubich, C., Ostermann, A.: Linearly implicit time discretization of non-linear parabolic equations. IMA J. Numer. Anal. 15(4), 555–583 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  44. Lubich, C., Ostermann, A.: Runge-Kutta approximation of quasi-linear parabolic equations. Math. Comput. 64(210), 601–627 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  45. Lubich, C., Ostermann, A.: Runge-Kutta time discretization of reaction-diffusion and Navier-Stokes equations: nonsmooth-data error estimates and applications to long-time behaviour. Appl. Numer. Math. 22(1–3):279–292 (1996) (special issue celebrating the centenary of Runge-Kutta methods)

  46. Maitre, E.: Numerical analysis of nonlinear elliptic-parabolic equations. M2AN Math. Model. Numer. Anal. 36(1), 143–153 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  47. Minty, G.: On a monotonicity method for the solution of non-linear equations in Banach spaces. Proc. Natl. Acad. Sci. USA 50(6), 1038 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  48. Nochetto, R.H., Verdi, C.: Approximation of degenerate parabolic problems using numerical integration. SIAM J. Numer. Anal. 25(4), 784–814 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  49. Ostermann, A., Thalhammer, M.: Convergence of Runge-Kutta methods for nonlinear parabolic equations. Appl. Numer. Math. In: Ninth Seminar on Numerical Solution of Differential and Differential-Algebraic Equations (Halle, 2000) 42(1–3):367–380 (2002)

  50. Ostermann, A., Thalhammer, M., Kirlinger, G.: Stability of linear multistep methods and applications to nonlinear parabolic problems. Appl. Numer. Math. In: Workshop on Innovative Time Integrators for PDEs 48(3–4):389–407 (2004)

  51. Pop, I.S.: Numerical schemes for degenerate parabolic problems. In: Progress in Industrial Mathematics at ECMI 2004, vol. 8. Math. Ind., pp. 513–517. Springer, Berlin (2006)

  52. Rulla, J., Walkington, N.J.: Optimal rates of convergence for degenerate parabolic problems in two dimensions. SIAM J. Numer. Anal. 33(1), 56–67 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Clément Cancès for fruitful discussions on discrete compensated compactness theorems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérôme Droniou.

Appendix: Uniform-in-time compactness results for time-dependent problems

Appendix: Uniform-in-time compactness results for time-dependent problems

We establish in this appendix some generic results, unrelated to the framework of gradient schemes, that form the starting point for our uniform-in-time convergence results.

Solutions of numerical schemes for parabolic equations are usually piecewise constant, and therefore not continous, in time. As their jumps nevertheless tend to become small as the time step goes to 0, it is possible to establish uniform-in-time convergence properties using a generalisation to non-continuous functions of the classical Ascoli–Arzelà theorem.

Definition 6.1

If \((K,d_K)\) and \((E,d_E)\) are metric spaces, we denote by \(\mathcal F(K,E)\) the space of functions \(K\rightarrow E\) endowed with the uniform metric \(d_\mathcal F(v,w)=\sup _{s\in K}d_E(v(s),w(s))\) (note that this metric may take infinite values).

Theorem 6.2

(Discontinuous Ascoli–Arzelà’s theorem) Let \((K,d_K)\) be a compact metric space, \((E,d_E)\) be a complete metric space and \((\mathcal F(K,E),d_{\mathcal F})\) be as in Definition 6.1.

Let \((v_m)_{m\in \mathbb N}\) be a sequence in \(\mathcal F(K,E)\) such that there exists a function \(\omega :K\times K\rightarrow [0,\infty ]\) and a sequence \((\delta _m)_{m\in \mathbb N} \subset [0,\infty )\) satisfying

$$\begin{aligned} \begin{array}{l} \displaystyle \lim _{d_K(s,s')\rightarrow 0}\omega (s,s')=0,\quad \lim _{m\rightarrow \infty }\delta _m=0,\\ \displaystyle \forall (s,s')\in K^2,\;\forall m\in \mathbb N,\; d_E(v_m(s),v_m(s'))\le \omega (s,s')+\delta _m. \end{array} \end{aligned}$$
(79)

We also assume that, for all \(s\in K\), \(\{v_m(s)\,:\,m\in \mathbb N\}\) is relatively compact in \((E,d_E)\).

Then \((v_m)_{m\in \mathbb N}\) is relatively compact in \((\mathcal F(K,E),d_{\mathcal F})\) and any adherence value of \((v_m)_{m\in \mathbb N}\) in this space is continuous \(K\rightarrow E\).

Proof

Let us first notice that the last conclusion of the theorem, i.e. that any adherence value v of \((v_m)_{m\in \mathbb N}\) in \(\mathcal F(K,E)\) is continuous, is trivially obtained by passing to the limit in (79), which shows that the modulus of continuity of v is bounded above by \(\omega \).

The proof of the compactness result is an easy generalisation of the proof of the classical Ascoli–Arzelà theorem. We start by taking a countable dense subset \(\{s_l\,:\,l\in \mathbb N\}\) in K (the existence of this set is ensured since K is compact metric). Since each set \(\{v_m(s_l)\,:\,m\in \mathbb N\}\) is relatively compact in E, by diagonal extraction we can select a subsequence of \((v_m)_{m\in \mathbb N}\), denoted the same way, such that, for any \(l\in \mathbb N\), \((v_m(s_l))_{m\in \mathbb N}\) converges in E. We then proceed to show that \((v_m)_{m\in \mathbb N}\) is a Cauchy sequence in \((\mathcal F(K,E),d_{\mathcal F})\). Since this space is complete, this will prove that this sequence converges in this space, which will complete the proof.

Let \(\varepsilon >0\) and, using (79), take \(\rho >0\) and \(M\in \mathbb N\) such that \(\omega (s,s')\le \varepsilon \) whenever \(d_K(s,s')\le \rho \) and \(\delta _m\le \varepsilon \) whenever \(m\ge M\). Select a finite set \(\{s_{l_1},\ldots ,s_{l_N}\}\) such that any \(s\in K\) is within distance \(\rho \) of a \(s_{l_i}\). Then for any \(m,m'\ge M\)

$$\begin{aligned} d_E(v_m(s),v_{m'}(s))\le & {} d_E(v_m(s),v_m(s_{l_i}))+d_E(v_m(s_{l_i}),v_{m'}(s_{l_i})) +d_E(v_{m'}(s_{l_i}),v_{m'}(s))\\\le & {} \omega (s,s_{l_i})+\delta _m + d_E(v_m(s_{l_i}),v_{m'}(s_{l_i})) + \omega (s,s_{l_i})+\delta _{m'}\\\le & {} 4\varepsilon + d_E(v_m(s_{l_i}),v_{m'}(s_{l_i})). \end{aligned}$$

Since \(\{(v_m(s_{l_i}))_{m\in \mathbb N}\,:\,i=1,\ldots ,N\}\) forms a finite number of converging sequences in E, we can find \(M'\ge M\) such that, for all \(m,m'\ge M'\) and all \(i=1,\ldots ,N\), \(d_E(v_m(s_{l_i}),v_{m'}(s_{l_i}))\le \varepsilon \). This shows that, for all \(m,m'\ge M'\) and all \(s\in K\), \(d_E(v_m(s),v_{m'}(s))\le 5\varepsilon \) and concludes the proof that \((v_m)_{m\in \mathbb N}\) is a Cauchy sequence in \((\mathcal F(K,E),d_{\mathcal F})\). \(\square \)

Remark 6.3

Conditions (79) are usually the most practical when \((v_m)_{m\in \mathbb N}\) are piecewise constant-in-time solutions to numerical schemes (see e.g. the proof of Theorem 3.1). Here, \(\omega \) is expected to measure the size of the cumulated jumps of \(v_m\) between s and \(s'\), and \(\delta _m\) accounts for boundary effects which may occur in the small time intervals containing s and \(s'\).

It is easy to see that (79) can be replaced with

$$\begin{aligned} d_E(v_m(s),v_m(s')) \rightarrow 0, \text{ as } m\rightarrow \infty \text{ and } d_K(s,s')\rightarrow 0 \end{aligned}$$
(80)

(under this condition, the proof can be carried out by selecting \(M\in \mathbb N\) and \(\rho >0\) such that \(d_E(v_m(s),v_m(s'))\le \varepsilon \) whenever \(m\ge M\) and \(d_K(s,s')\le \rho \)). It turns out that (80) is actually a necessary and sufficient condition for the theorem’s conclusions to hold true.

The following lemma states an equivalent condition for the uniform convergence of functions, which proves extremely useful to establish uniform-in-time convergence of numerical schemes for parabolic equations when no smoothness is assumed on the data.

Lemma 6.4

Let \((K,d_K)\) be a compact metric space, \((E,d_E)\) be a metric space and \((\mathcal F(K,E),d_{\mathcal F})\) as in Definition 6.1. Let \((v_m)_{m\in \mathbb N}\) be a sequence in \(\mathcal F(K,E)\) and \(v:K\mapsto E\) be continuous.

Then \(v_m\rightarrow v\) for \(d_{\mathcal F}\) if and only if, for any \(s\in K\) and any sequence \((s_m)_{m\in \mathbb N}\subset K\) converging to s for \(d_K\), we have \(v_m(s_m)\rightarrow v(s)\) for \(d_E\).

Proof

If \(v_m\rightarrow v\) for \(d_{\mathcal F}\) then for any sequence \((s_m)_{m\in \mathbb N}\) converging to s

$$\begin{aligned} d_E(v_m(s_m),v(s))\le & {} d_E(v_m(s_m),v(s_m))+d_E(v(s_m),v(s))\\\le & {} d_{\mathcal F}(v_m,v)+d_E(v(s_m),v(s)). \end{aligned}$$

The right-hand side tends to 0 by definition of \(v_m\rightarrow v\) for \(d_{\mathcal F}\) and by continuity of v, which shows that \(v_m(s_m)\rightarrow v(s)\) for \(d_E\).

Let us now prove the converse by contradiction. If \((v_m)_{m\in \mathbb N}\) does not converge to v for \(d_{\mathcal F}\) then there exists \(\varepsilon >0\) and a subsequence \((v_{m_k})_{k\in \mathbb N}\), such that, for any \(k\in \mathbb N\), \(\sup _{s\in K} d_E(v_{m_k}(s),v(s))\ge \varepsilon \). We can then find a sequence \((r_k)_{k\in \mathbb N}\subset K\) such that, for any \(k\in \mathbb N\),

$$\begin{aligned} d_E(v_{m_k}(r_k),v(r_k))\ge \varepsilon /2. \end{aligned}$$
(81)

K being compact, up to another subsequence denoted the same way, we can assume that \(r_k\) converges as \(k\rightarrow \infty \) to some s in K. It is then trivial to construct a sequence \((s_m)_{m\in \mathbb N}\) converging to s and such that \(s_{m_k}=r_k\) (just take \(s_m=s\) when m is not an \(m_k\)). We then have \(v_m(s_m)\rightarrow v(s)\) in E and, by continuity of v, \(v(s_m)\rightarrow v(s)\) in E. This shows that \(d_E(v_m(s_m),v(s_m))\rightarrow 0\), which contradicts (81) and concludes the proof. \(\square \)

The next result is classical. Its short proof is recalled for the reader’s convenience.

Proposition 6.5

Let E be a closed bounded ball in \(L^2(\Omega )\) and let \((\varphi _l)_{l\in \mathbb N}\) be a dense sequence in \(L^2(\Omega )\). Then, on E, the weak topology of \(L^2(\Omega )\) is the topology given by the metric

$$\begin{aligned} d_E(v,w)=\sum _{l\in \mathbb N} \frac{\min (1,|\langle v-w,\varphi _l\rangle _{L^2(\Omega )}|)}{2^l}. \end{aligned}$$
(82)

Moreover, a sequence of functions \(u_m:[0,T]\rightarrow E\) converges uniformly-in-time to \(u:[0,T]\rightarrow E\) for the weak topology of \(L^2(\Omega )\) (see Definition 2.11) if and only if, as \(m\rightarrow \infty \), \(d_E(u_m,u):[0,T]\rightarrow [0,\infty )\) converges uniformly to 0.

Proof

The sets \(E_{\varphi ,\varepsilon }= \{v\in E\,:\,|\langle v,\varphi \rangle _{L^2(\Omega )}|<\varepsilon \}\), for \(\varphi \in L^2(\Omega )\) and \(\varepsilon >0\), define a basis of neighborhoods of 0 for the weak \(L^2(\Omega )\) topology on E, and a basis of neighborhoods of any other point is obtained by translation. If R is the radius of the ball E then for any \(\varphi \in L^2(\Omega )\), \(l\in \mathbb N\) and \(v\in E\) we have

$$\begin{aligned} |\langle v,\varphi \rangle _{L^2(\Omega )}|\le R||\varphi -\varphi _l||_{L^2(\Omega )} +|\langle v,\varphi _l\rangle _{L^2(\Omega )}|. \end{aligned}$$

By density of \((\varphi _l)_{l\in \mathbb N}\) we can select \(l\in \mathbb N\) such that \(||\varphi -\varphi _l||_{L^2(\Omega )}<\varepsilon /(2R)\) and we then see that \(E_{\varphi _l,\varepsilon /2}\subset E_{\varphi ,\varepsilon }\). Hence, a basis of neighborhoods of 0 in E for the weak \(L^2(\Omega )\) is also given by \((E_{\varphi _l,\varepsilon })_{l\in \mathbb N,\,\varepsilon >0}\).

From the definition of \(d_E\) we see that, for any \(l\in \mathbb N\), \(\min (1,|\langle v,\varphi _l\rangle _{L^2(\Omega )}|)\le 2^l d_E(0,v)\). If \(d_E(0,v)<2^{-l}\) this shows that \(|\langle v,\varphi _l\rangle _{L^2(\Omega )}|\le 2^l d_E(0,v)\) and therefore that

$$\begin{aligned} B_{d_E}(0,\min (2^{-l},\varepsilon 2^{-l}))\subset E_{\varphi _l,\varepsilon }. \end{aligned}$$

Hence, any neighborhood of 0 in E for the \(L^2(\Omega )\) weak topology is a neighborhood of 0 for \(d_E\). Conversely, for any \(\varepsilon >0\), selecting \(N\in \mathbb N\) such that \(\sum _{l\ge N+1}2^{-l}<\varepsilon /2\) gives, from the definition (82) of \(d_E\),

$$\begin{aligned} \bigcap _{l=1}^N E_{\varphi _l,\varepsilon /4}\subset B_{d_E}(0,\varepsilon ). \end{aligned}$$

Hence, any ball for \(d_E\) centered at 0 is a neighborhood of 0 for the \(L^2(\Omega )\) weak topology. Since \(d_E\) and the \(L^2(\Omega )\) weak neighborhoods are invariant by translation, this concludes the proof that this weak topology is identical to the topology generated by \(d_E\).

The conclusion on weak uniform convergence of sequences of functions follows from the preceding result, and more precisely by noticing that all previous inclusions are, when applied to \(u_m(t)-u(t)\), uniform with respect to \(t\in [0,T]\). \(\square \)

The following lemma has been initially established in [35, Proposition 9.3].

Lemma 6.6

Let \((t^{(n)})_{n\in \mathbb Z}\) be a stricly increasing sequence of real values such that \({\delta t}^{(n+{\frac{1}{2}})} := t^{(n+1)} - t^{(n)}\) is uniformly bounded by \({\delta t}>0\), \(\displaystyle \lim \nolimits _{n\rightarrow -\infty } t^{(n)} = -\infty \) and \(\displaystyle \lim \nolimits _{n\rightarrow \infty } t^{(n)} = \infty \). For all \(t\in \mathbb R\), we denote by n(t) the element \(n\in \mathbb Z\) such that \(t\in (t^{(n)},t^{(n+1)}]\). Let \((a^{(n)})_{n\in \mathbb Z}\) be a family of non negative real numbers with a finite number of non zero values. Then

$$\begin{aligned} \int _{\mathbb R} \sum _{n=n(t)+1}^{n(t+\tau )} ({\delta t}^{(n+{\frac{1}{2}})} a^{(n+1)}) \mathrm{d}t = \tau \sum _{n\in \mathbb Z} ({\delta t}^{(n+{\frac{1}{2}})} a^{(n+1)}), \quad \forall \tau >0, \end{aligned}$$
(83)

and

$$\begin{aligned} \int _{\mathbb R} \left( \sum _{n=n(t)+1}^{n(t+\tau )}{\delta t}^{(n+{\frac{1}{2}})}\right) a^{n(t+s)+1} \mathrm{d}t \le (\tau + {\delta t}) \sum _{n\in \mathbb Z} {\delta t}^{(n+{\frac{1}{2}})} a^{(n+1)}, \quad \forall \tau >0, \ \forall s\in \mathbb R. \end{aligned}$$
(84)

Proof

Let us define \(\chi \) by \(\chi (t,n,\tau ) = 1\) if \(t^{(n)}\in [t,t+\tau )\), otherwise \(\chi (t,n,\tau ) = 0\). We have

$$\begin{aligned} \int _{\mathbb R} \sum _{n=n(t)+1}^{n(t+\tau )}({\delta t}^{(n+{\frac{1}{2}})} a^{(n+1)}) \mathrm{d}t&= \int _{\mathbb R} \sum _{n\in \mathbb Z} ({\delta t}^{(n+{\frac{1}{2}})} a^{(n+1)} \chi (t,n,\tau ))\mathrm{d}t\\&= \sum _{n\in \mathbb Z} \left( {\delta t}^{(n+{\frac{1}{2}})} a^{(n+1)} \int _{\mathbb R} \chi (t,n,\tau )\mathrm{d}t\right) . \end{aligned}$$

Since \(\int _{\mathbb R} \chi (t,n,\tau )\mathrm{d}t = \int _{t^{(n)}-\tau }^{t^{(n)}} \mathrm{d}t = \tau \), Relation (83) is proved.

We now turn to the proof of (84). We define \(\widetilde{\chi }\) by \(\widetilde{\chi }(n,t) = 1\) if \(n(t) = n\), otherwise \(\widetilde{\chi }(n,t) = 0\). We have

$$\begin{aligned}&\int _{\mathbb R} \left( \sum _{n=n(t)+1}^{n(t+\tau )}{\delta t}^{(n+{\frac{1}{2}})}\right) a^{(n(t+s)+1)} \mathrm{d}t \\&\quad = \int _{\mathbb R} \left( \sum _{n=n(t)+1}^{n(t+\tau )}{\delta t}^{(n+{\frac{1}{2}})}\right) \sum _{m\in \mathbb Z}a^{(m+1)}\widetilde{\chi }(m,t+s) \mathrm{d}t, \end{aligned}$$

which yields

$$\begin{aligned} \int _{\mathbb R} \left( \sum _{n=n(t)+1}^{n(t+\tau )}{\delta t}^{(n+{\frac{1}{2}})}\right) a^{(n(t+s)+1)} \mathrm{d}t \!=\! \sum _{m\in \mathbb Z} a^{(m+1)} \int _{t^{(m)}-s}^{t^{(m+1)}-s} \!\left( \sum _{n=n(t)+1}^{n(t+\tau )}{\delta t}^{(n+{\frac{1}{2}})}\right) \mathrm{d}t. \end{aligned}$$
(85)

Since

$$\begin{aligned} \sum _{n=n(t)+1}^{n(t+\tau )}{\delta t}^{(n+{\frac{1}{2}})} = \sum _{n\in \mathbb Z,\ t\le t^{(n)} < t+\tau } (t^{(n+1)} - t^{(n)}) \le \tau + {\delta t}, \end{aligned}$$

we deduce from (85) that

$$\begin{aligned} \displaystyle \int _{\mathbb R} \left( \sum _{n=n(t)+1}^{n(t+\tau )}{\delta t}^{(n+{\frac{1}{2}})}\right) a^{(n(t+s)+1)} \mathrm{d}t&\le (\tau + {\delta t}) \sum _{m\in \mathbb Z} a^{(m+1)} \int _{t^{(m)}-s}^{t^{(m+1)}-s} \mathrm{d}t \\&= (\tau + {\delta t})\sum _{m\in \mathbb Z} a^{(m+1)} {\delta t}^{(m+{\frac{1}{2}})}, \end{aligned}$$

which is exactly (84). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Droniou, J., Eymard, R. Uniform-in-time convergence of numerical methods for non-linear degenerate parabolic equations. Numer. Math. 132, 721–766 (2016). https://doi.org/10.1007/s00211-015-0733-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-015-0733-6

Mathematics Subject Classification

Navigation