Skip to main content
Log in

On multiscale methods in Petrov–Galerkin formulation

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this work we investigate the advantages of multiscale methods in Petrov–Galerkin (PG) formulation in a general framework. The framework is based on a localized orthogonal decomposition of a high dimensional solution space into a low dimensional multiscale space with good approximation properties and a high dimensional remainder space, which only contains negligible fine scale information. The multiscale space can then be used to obtain accurate Galerkin approximations. As a model problem we consider the Poisson equation. We prove that a Petrov–Galerkin formulation does not suffer from a significant loss of accuracy, and still preserve the convergence order of the original multiscale method. We also prove inf-sup stability of a PG continuous and a discontinuous Galerkin finite element multiscale method. Furthermore, we demonstrate that the Petrov–Galerkin method can decrease the computational complexity significantly, allowing for more efficient solution algorithms. As another application of the framework, we show how the Petrov–Galerkin framework can be used to construct a locally mass conservative solver for two-phase flow simulation that employs the Buckley–Leverett equation. To achieve this, we couple a PG discontinuous Galerkin finite element method with an upwind scheme for a hyperbolic conservation law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abdulle, A.: On a priori error analysis of fully discrete heterogeneous multiscale FEM. Multiscale Model. Simul. 4(2), 447–459 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  2. Abdulle, A., E,W., Engquist, B., Vanden-Eijnden, E.: The heterogeneous multiscale method. Acta Numer. 21, 1–87 (2012)

  3. Allaire, G.: Homogenization and two-scale convergence. SIAM J. Math. Anal. 23(6), 1482–1518 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  4. Aziz, K., Settari, A.: Petroleum Reservoir Simulation. Applied Science Publishers, London (1997)

    Google Scholar 

  5. Babuska, I., Lipton, R.: Optimal local approximation spaces for generalized finite element methods with application to multiscale problems. Multiscale Model. Simul. 9(1), 373–406 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bank, R.E., Dupont, T.: An optimal order process for solving finite element equations. Math. Comput. 36(153), 35–51 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bank, R.E., Yserentant, H.: On the \(H^1\)-stability of the \(L_2\)-projection onto finite element spaces. Numer. Math. 126(2), 361–381 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bush, L., Ginting, V., Presho, M.: Application of a conservative, generalized multiscale finite element method to flow models. J. Comput. Appl. Math. 260, 395–409 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  9. Carstensen, C.: Quasi-interpolation and a posteriori error analysis in finite element methods. M2AN. Math. Model. Numer. Anal. 33(6), 1187–1202 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  10. Carstensen, C., Verfürth, R.: Edge residuals dominate a posteriori error estimates for low order finite element methods. SIAM J. Numer. Anal. 36(5), 1571–1587 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. Efendiev, Y., Ginting, V., Hou, T., Ewing, R.: Accurate multiscale finite element methods for two-phase flow simulations. J. Comput. Phys. 220(1), 155–174 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Efendiev, Y., Hou, T., Ginting, V.: Multiscale finite element methods for nonlinear problems and their applications. Commun. Math. Sci. 2(4), 553–589 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. Elfverson, D., Georgoulis, E.H., Målqvist, A.: An adaptive discontinuous Galerkin multiscale method for elliptic problems. Multiscale Model. Simul. 11(3), 747–765 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  14. Elfverson, D., Georgoulis, E.H., Målqvist, A., Peterseim, D.: Convergence of a discontinuous Galerkin multiscale method. SIAM J. Numer. Anal. 51(6), 3351–3372 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  15. Gaspoz, F.D., Heine, C.-J., Siebert, K.G.: Optimal grading of the newest vertex bisection and \({H}^1\)-stability of the \({L}^2\)-projection. SimTech Universität, Stuttgart (2014)

    Google Scholar 

  16. Ginting, V.: Analysis of two-scale finite volume element method for elliptic problem. J. Numer. Math. 12(2), 119–141 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Gloria, A.: An analytical framework for the numerical homogenization of monotone elliptic operators and quasiconvex energies. Multiscale Model. Simul. 5(3), 996–1043 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Gloria, A.: Reduction of the resonance error-part 1: approximation of homogenized coefficients. Math. Models Methods Appl. Sci. 21(8), 1601–1630 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  19. Henning, P., Målqvist, A.: Localized orthogonal decomposition techniques for boundary value problems. SIAM J. Sci. Comput. 36(4), A1609–A1634 (2014)

    Article  MATH  Google Scholar 

  20. Henning, P., Målqvist, A., Peterseim, D.: A localized orthogonal decomposition method for semi-linear elliptic problems. ESAIM Math. Model. Numer. Anal. 48(5), 1331–1349 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  21. Henning, P., Målqvist, A., Peterseim, D.: Two-level discretization techniques for ground state computations of Bose–Einstein condensates. SIAM J. Numer. Anal. 52(4), 1525–1550 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  22. Henning, P., Morgenstern, P., Peterseim, D.: Multiscale partition of unity. In: Meshfree Methods for Partial Differential Equations VII. Lecture Notes in Computational Science and Engineering, vol. 100. Springer, Berlin (2015)

  23. Henning, P., Ohlberger, M.: The heterogeneous multiscale finite element method for elliptic homogenization problems in perforated domains. Numer. Math. 113(4), 601–629 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  24. Henning, P., Peterseim, D.: Oversampling for the multiscale finite element method. Multiscale Model. Simul. 11(4), 1149–1175 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  25. Hou, T.Y., Wu, X.-H.: A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134(1), 169–189 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  26. Hou, T.Y., Wu, X.-H., Zhang, Y.: Removing the cell resonance error in the multiscale finite element method via a Petrov–Galerkin formulation. Commun. Math. Sci. 2(2), 185–205 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  27. Hughes, T.J.R.: Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods. Comput. Methods Appl. Mech. Eng. 127(1–4), 387–401 (1995)

    Article  MATH  Google Scholar 

  28. Hughes, T.J.R., Feijóo, G.R., Mazzei, L., Quincy, J.-B.: The variational multiscale method—a paradigm for computational mechanics. Comput. Methods Appl. Mech. Eng. 166(1–2), 3–24 (1998)

    Article  MATH  Google Scholar 

  29. Karkulik, M., Pfeiler, C.-M., Praetorius, D.: \({L}^2\)-orthogonal projections onto finite elements on locally refined meshes are \({H}^1\)-stable (2013). arXiv:1307.0917

  30. Kröner, D.: Numerical schemes for conservation laws. In: Wiley-Teubner Series Advances in Numerical Mathematics. Wiley, Chichester (1997)

  31. Larson, M.G., Målqvist, A.: Adaptive variational multiscale ethods based on a posteriori error estimation: duality techniques for elliptic problems. In: Multiscale Methods in Science and Engineering. Lecture Notes in Computational Science and Engineering, vol. 44, pp. 181–193. Springer, Berlin (2005)

  32. LeFloch, P.G.: Hyperbolic systems of conservation laws. In: Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel (2002). (The theory of classical and nonclassical shock waves)

  33. Målqvist, A.: Multiscale methods for elliptic problems. Multiscale Model. Simul. 9(3), 1064–1086 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  34. Målqvist, A., Peterseim, D.: Computation of eigenvalues by numerical upscaling. Numer. Math. (2014). doi: 10.1007/s00211-014-0665-6

  35. Målqvist, A., Peterseim, D.: Localization of elliptic multiscale problems. Math. Comput. 83(290), 2583–2603 (2014)

    Article  MATH  Google Scholar 

  36. Ohlberger, M.: A posteriori error estimates for the heterogeneous multiscale finite element method for elliptic homogenization problems. Multiscale Model. Simul. 4(1), 88–114 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  37. Owhadi, H., Zhang, L.: Localized bases for finite-dimensional homogenization approximations with nonseparated scales and high contrast. Multiscale Model. Simul. 9(4), 1373–1398 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  38. Owhadi, H., Zhang, L., Berlyand, L.: Polyharmonic homogenization, rough polyharmonic splines and sparse super-localization. ESAIM Math. Model. Numer. Anal. 48(2), 517–552 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  39. van der Vorst, H.A.: Computational methods for large eigenvalue problems. In: Handbook of Numerical Analysis, vol. VIII, pp. 3–179. North-Holland, Amsterdam (2002)

  40. Weinan, E., Engquist, B.: The heterogeneous multiscale methods. Commun. Math. Sci. 1(1), 87–132 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

We would like to thank the anonymous referees for their valuable comments and their constructive feedback on the original manuscript which helped us to improve this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Henning.

Additional information

D. Elfverson and P. Henning were partially supported by the Göran Gustafsson Foundation and the Swedish Research Council.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elfverson, D., Ginting, V. & Henning, P. On multiscale methods in Petrov–Galerkin formulation. Numer. Math. 131, 643–682 (2015). https://doi.org/10.1007/s00211-015-0703-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-015-0703-z

Mathematics Subject Classification

Navigation