Skip to main content
Log in

Numerical solution of Sturm–Liouville problems via Fer streamers

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We address the numerical challenge of solving regular Sturm–Liouville problems in Liouville’s normal form, with a continuous and piecewise analytic potential and self-adjoint separated boundary conditions. The novelty of our approach, which is based on a non-standard truncation of Fer expansions, which we call ‘Fer streamers’, lies in the construction of a new numerical method, which (1) does not impose any restriction on the step size for eigenvalues which are greater than or equal to the minimum of the potential, (2) requires only a mild restriction on the step size for the remaining finite number of eigenvalues, (3) can attain any convergence rate, which grows exponentially with the number of terms, and is uniform for every eigenvalue, and (4) lends itself to a clear understanding of the manner in which the potential affects the local and global errors. We provide our numerical method with its analytical underpinning, but emphasize that it is at an early stage of development and that much remains to be done. In particular, we comment on our investigation of efficient discretization schemes for the integrals which arise in Fer streamers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Driscoll, T., Hale, N., Trefethen, L. (eds.): Chebfun Guide. Pafnuty Publications, Oxford (2014)

    Google Scholar 

  2. Everitt, W.N.: A catalogue of Sturm–Liouville differential equations. In: Amrein, W.O., Hinz, A.M., Pearson, D.P. (eds.) Sturm-Liouville Theory: Past and Present, pp. 271–331. Birkhäuser, Basel (2005)

    Chapter  Google Scholar 

  3. Fer, F.: Résolution del l‘equation matricielle \(\dot{U}=pU\) par produit infini d‘exponentielles matricielles. Bull. de la Classe des Sci. Acad. R. de Belg. 44, 818–829 (1958)

    MATH  MathSciNet  Google Scholar 

  4. Iserles, A.: Solving linear ordinary differential equations by exponentials of iterated commutators. Numer. Math. 45(2), 183–199 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  5. Iserles, A., Munthe-Kaas, H.Z., Nørsett, S., Zanna, A.: Lie-group methods. Acta Numer. 9, 215–365 (2000)

    Article  Google Scholar 

  6. Iserles, A., Nørsett, S.: On the solution of linear differential equations on Lie-groups. Philos. Trans. R. Soc. A 357, 983–1019 (1999)

    Article  MATH  Google Scholar 

  7. Ixaru, L.: CP methods for the Schrödinger equation. J. Comput. Appl. Math. 125(1–2), 347–357 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Ledoux, V., Daele, M.V., Berghe, G.V.: Matslise: a matlab package for the numerical solution of Sturm–Liouville and Schrödinger equations. ACM Trans. Math. Softw. 31(4), 532–554 (2005)

    Article  MATH  Google Scholar 

  9. Ledoux, V., Daele, M., van den Berghe, G.: Efficient numerical solution of the 1D Schrödinger eigenvalue problem using magnus integrators. IMA J. Numer. Anal. 30, 751–776 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  10. Moan, P.C.: Efficient approximation of Sturm–Liouville problems using Lie-group methods. Technical Report, Department of Applied Mathematics and Theoretical Physics, University of Cambridge, United Kingdom (1998)

  11. Pryce, J.: Numerical Solution of Sturm–Liouville Problems. Oxford University Press, Oxford (1993)

    MATH  Google Scholar 

  12. Zanna, A.: The method of iterated commutators for ordinary differential quations on Lie groups. Technical Report, Department of Applied Mathematics and Theoretical Physics, University of Cambridge, United Kingdom (1996)

  13. Zanna, A.: On the numerical solution of isospectral flows. PhD thesis, University of Cambridge, United Kingdom (1998)

  14. Zettl, A.: Sturm–Liouville Theory. American Mathematical Society, Providence (2005)

    MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers for their valuable comments and suggestions that significantly contributed to improving the quality of the paper. The work of A. G. C. P. Ramos was supported by Fundação para a Ciência e a Tecnologia, Portugal through the fellowship SFRH/BD/71692/2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Gil C. P. Ramos.

Appendices

Appendix A. Proof of Theorem 3

Note that

$$\begin{aligned}&\mathbf {\pi }\left( \mathbf {B}_{\lambda ,l}(c_k,t)\right) =\mathbf {\pi }\left( \sum _{j=1}^{\infty }(-1)^j\frac{j}{(j+1)!}\mathrm {ad}_{\mathbf {D}_{\lambda ,l-1}(c_k,t)}^j\mathbf {B}_{\lambda ,l-1}(c_k,t)\right) \\&\quad =\sum _{j=1}^{\infty }(-1)^j\frac{j}{(j+1)!}\mathbf {\pi }\left( \mathrm {ad}_{\mathbf {D}_{\lambda ,l-1}(c_k,t)}^j\mathbf {B}_{\lambda ,l-1}(c_k,t)\right) \\&\quad =\left( \sum _{j=1}^{\infty }(-1)^j\frac{j}{(j+1)!}\mathbf {\fancyscript{C}}_{\mathbf {D}_{\lambda ,l-1}(c_k,t)}^j\right) \mathbf {\pi }\left( \mathbf {B}_{\lambda ,l-1}(c_k,t)\right) \\&\quad =-\left( \sum _{j=1}^{\infty }\frac{2j-1}{(2j)!}\mathbf {\fancyscript{C}}_{\mathbf {D}_{\lambda ,l-1}(c_k,t)}^{2j-1}\right) \mathbf {\pi }\left( \mathbf {B}_{\lambda ,l-1}(c_k,t)\right) \\&\quad \quad +\left( \sum _{j=1}^{\infty }\frac{2j}{(2j+1)!}\mathbf {\fancyscript{C}}_{\mathbf {D}_{\lambda ,l-1}(c_k,t)}^{2j}\right) \mathbf {\pi }\left( \mathbf {B}_{\lambda ,l-1}(c_k,t)\right) \\&\quad =-\left( \sum _{j=1}^{\infty }\frac{2j-1}{(2j)!}\rho ^{2j-2}\left( \mathbf {D}_{\lambda ,l-1}(c_k,t)\right) \right) \mathbf {\fancyscript{C}}_{\mathbf {D}_{\lambda ,l-1}(c_k,t)}\mathbf {\pi }\left( \mathbf {B}_{\lambda ,l-1}(c_k,t)\right) \\&\quad \quad +\left( \sum _{j=1}^{\infty }\frac{2j}{(2j+1)!}\rho ^{2j-2}\left( \mathbf {D}_{\lambda ,l-1}(c_k,t)\right) \right) \mathbf {\fancyscript{C}}_{\mathbf {D}_{\lambda ,l-1}(c_k,t)}^2\mathbf {\pi }\left( \mathbf {B}_{\lambda ,l-1}(c_k,t)\right) \end{aligned}$$

where the first equality is due to Definition 2, and the third and last equalities are due to Theorem 2.

Appendix B. Proof of Theorem 4

Recall Definitions 2 and 3 and note that

$$\begin{aligned} \rho \left( \mathbf {D}_{\lambda ,0}(c_k,t)\right) =2(t-c_k)\sqrt{\frac{\int _{c_k}^tq(\xi )d\xi }{t-c_k}-\lambda }. \end{aligned}$$
(27)

Note further that, (27) and assumptions (4) and (5) ensure

$$\begin{aligned} \lambda \in \left[ q_{\mathrm {max}}-h_{\mathrm {max}}^{-2},q_{\mathrm {min}}\right]&\Rightarrow \rho \left( \mathbf {D}_{\lambda ,0}(c_k,t)\right) \in \left[ 0,2h_{\mathrm {max}}\sqrt{q_{\mathrm {max}}-\lambda }\right] \subseteq \left[ 0,2\right] \end{aligned}$$
(28)
$$\begin{aligned} \lambda \in \left[ q_{\mathrm {min}},q_{\mathrm {max}}\right]&\Rightarrow \left| \rho \left( \mathbf {D}_{\lambda ,0}(c_k,t)\right) \right| \le 2h_{\mathrm {max}}\sqrt{q_{\mathrm {max}}-q_{\mathrm {min}}}\le 2\end{aligned}$$
(29)
$$\begin{aligned} \lambda \in \left[ q_{\mathrm {max}},q_{\mathrm {max}}+h_{\mathrm {max}}^{-2}\right]&\Rightarrow \rho \left( \mathbf {D}_{\lambda ,0}(c_k,t)\right) \in i\left[ 0,2h_{\mathrm {max}}\sqrt{\lambda -q_{\mathrm {min}}}\right] \subseteq i\left[ 0,2\sqrt{2}\right] \end{aligned}$$
(30)
$$\begin{aligned} \lambda \in \left[ q_{\mathrm {max}}+h_{\mathrm {max}}^{-2},+\infty \right)&\Rightarrow \rho \left( \mathbf {D}_{\lambda ,0}(c_k,t)\right) \in i\left[ 2\left( t-c_k\right) \sqrt{\lambda -q_{\mathrm {max}}},+\infty \right) \end{aligned}$$
(31)

which, together with Definition 4 and Remark 5, lead to the following estimates, in the two uniform regimes (11) and (12):

$$\begin{aligned} \left| \varphi \left( \rho \left( \mathbf {D}_{\lambda ,0}(c_k,t)\right) \right) \right|&\le 2,\text { w.r.t }(11),\end{aligned}$$
(32)
$$\begin{aligned} \left| \phi \left( \rho \left( \mathbf {D}_{\lambda ,0}(c_k,t)\right) \right) \right|&\le 1,\text { w.r.t }(11),\end{aligned}$$
(33)
$$\begin{aligned} \left| \phi \left( \rho \left( \mathbf {D}_{\lambda ,0}(c_k,t)\right) \right) \rho ^2\left( \mathbf {D}_{\lambda ,0}(c_k,t)\right) \right|&\le 2,\text { w.r.t }(11),\end{aligned}$$
(34)
$$\begin{aligned} \left| \varphi \left( \rho \left( \mathbf {D}_{\lambda ,0}(c_k,t)\right) \right) \right|&\le \frac{\left( t-c_k\right) ^{-1}}{\sqrt{\lambda -q_{\mathrm {max}}}},\text { w.r.t }(12),\end{aligned}$$
(35)
$$\begin{aligned} \left| \phi \left( \rho \left( \mathbf {D}_{\lambda ,0}(c_k,t)\right) \right) \right|&\le \frac{1}{2}\frac{\left( t-c_k\right) ^{-2}}{\lambda -q_{\mathrm {max}}},\text { w.r.t }(12),\end{aligned}$$
(36)
$$\begin{aligned} \left| \phi \left( \rho \left( \mathbf {D}_{\lambda ,0}(c_k,t)\right) \right) \rho ^2\left( \mathbf {D}_{\lambda ,0}(c_k,t)\right) \right|&\le 2,\text { w.r.t }(12). \end{aligned}$$
(37)

1.1 B.1. Estimating \(\exp \left( \mathbf {D}_{\lambda ,0}(c_k,c_{k+1})\right) \ldots \exp \left( \mathbf {D}_{\lambda ,0}(a,c_1)\right) \)

Firstly, in the uniform regime (11), we have

$$\begin{aligned}&e^{\mathbf {D}_{\lambda ,0}(c_k,c_{k+1})} =\cosh \frac{\rho \left( \mathbf {D}_{\lambda ,0}(c_k,c_{k+1})\right) }{2} \begin{bmatrix} 1&\quad 0\\ 0&\quad 1 \end{bmatrix} \\&\quad \quad +\frac{\sinh \frac{\rho \left( \mathbf {D}_{\lambda ,0}(c_k,c_{k+1})\right) }{2}}{\frac{\rho \left( \mathbf {D}_{\lambda ,0}(c_k,c_{k+1})\right) }{2}} \begin{bmatrix} 0&\quad c_{k+1}-c_k\\ \left( \frac{\rho \left( \mathbf {D}_{\lambda ,0}(c_k,c_{k+1})\right) }{2}\right) ^2(c_{k+1}-c_k)^{-1}&\quad 0 \end{bmatrix} \\&\quad =\mathcal {O}\left( 1\right) \begin{bmatrix} 1&\quad 0\\ 0&\quad 1 \end{bmatrix} + \mathcal {O}\left( 1\right) \begin{bmatrix} 0&\quad \mathcal {O}\left( 1\right) h_{\mathrm {max}}\\ \mathcal {O}\left( 1\right) h_{\mathrm {min}}^{-1}&\quad 0 \end{bmatrix} \\&\quad =\mathcal {O}\left( 1\right) \begin{bmatrix} 1&\quad 0\\ 0&\quad 1 \end{bmatrix} + \mathcal {O}\left( 1\right) \begin{bmatrix} 0&\quad \mathcal {O}\left( 1\right) h_{\mathrm {max}}\\ \mathcal {O}\left( 1\right) h_{\mathrm {max}}^{-1}&\quad 0 \end{bmatrix} \end{aligned}$$

where we have called upon (6), (28), (29) and (30). Secondly, in the uniform regime (12), we have

$$\begin{aligned}&e^{\mathbf {D}_{\lambda ,0}(c_k,c_{k+1})} =\cos \frac{\rho \left( \mathbf {D}_{\lambda ,0}(c_k,c_{k+1})\right) }{2i} \begin{bmatrix} 1&\quad 0\\ 0&\quad 1 \end{bmatrix} \\&\quad \quad +\sin \frac{\rho \left( \mathbf {D}_{\lambda ,0}(c_k,c_{k+1})\right) }{2i} \begin{bmatrix} 0&\quad \frac{c_{k+1}-c_k}{(2i)^{-1}\rho \left( \mathbf {D}_{\lambda ,0}(c_k,c_{k+1})\right) }\\ -\frac{(2i)^{-1}\rho \left( \mathbf {D}_{\lambda ,0}(c_k,c_{k+1})\right) }{c_{k+1}-c_k}&\quad 0 \end{bmatrix} \\&\quad =\mathcal {O}\left( 1\right) \begin{bmatrix} 1&\quad 0\\ 0&\quad 1 \end{bmatrix} +\mathcal {O}\left( 1\right) \begin{bmatrix} 0&\quad \frac{1}{\sqrt{\lambda -\frac{\int _{c_k}^{c_{k+1}}q(\xi )d\xi }{c_{k+1}-c_k}}}\\ -\sqrt{\lambda -\frac{\int _{c_k}^{c_{k+1}}q(\xi )d\xi }{c_{k+1}-c_k}}&\quad 0 \end{bmatrix} \\&\quad =\mathcal {O}\left( 1\right) \begin{bmatrix} 1&\quad 0\\ 0&\quad 1 \end{bmatrix} +\mathcal {O}\left( 1\right) \begin{bmatrix} 0&\quad \mathcal {O}\left( 1\right) \frac{1}{\sqrt{\lambda -q_{\mathrm {max}}}}\\ \mathcal {O}\left( 1\right) \sqrt{\lambda -q_{\mathrm {min}}}&\quad 0 \end{bmatrix} \\&\quad =\mathcal {O}\left( 1\right) \begin{bmatrix} 1&\quad 0\\ 0&\quad 1 \end{bmatrix} +\mathcal {O}\left( 1\right) \begin{bmatrix} 0&\quad \mathcal {O}\left( 1\right) \frac{1}{\sqrt{\lambda -q_{\mathrm {max}}}}\\ \mathcal {O}\left( 1\right) \sqrt{\lambda -q_{\mathrm {max}}}&\quad 0 \end{bmatrix} \end{aligned}$$

where the second equality is due to (27) and (31), and the last equality is due to the fact that (4) ensures that

$$\begin{aligned} \frac{\sqrt{\lambda -q_{\mathrm {min}}}}{\sqrt{\lambda -q_{\mathrm {max}}}} =\sqrt{1+\frac{q_{\mathrm {max}}-q_{\mathrm {min}}}{\lambda -q_{\mathrm {max}}}} \le \sqrt{1+h_{\mathrm {max}}^2(q_{\mathrm {max}}-q_{\mathrm {min}})}\le \sqrt{2}. \end{aligned}$$

1.2 B.2. Estimating \(\mathbf {\pi }\left( \mathbf {B}_{\lambda ,1}(c_k,t)\right) \) and \(\mathbf {\pi }\left( \mathbf {D}_{\lambda ,1}(c_k,t)\right) \)

Finally, we note that (32)–(37), in turn, imply that

$$\begin{aligned}&\varphi \left( \rho \left( \mathbf {D}_{\lambda ,0}(c_k,t)\right) \right) \mathbf {\fancyscript{C}}_{\mathbf {D}_{\lambda ,0}(c_k,t)}\mathbf {\pi }\left( \mathbf {B}_{\lambda ,0}(c_k,t)\right) \\&\quad = \begin{bmatrix} \varphi \left( \rho \left( \mathbf {D}_{\lambda ,0}(c_k,t)\right) \right) \frac{q(t)-\frac{\int _{c_k}^t q(\xi )d\xi }{t-c_k}}{t-c_k}(t-c_k)^2\\ 0\\ 0 \end{bmatrix}\\&\quad = {\left\{ \begin{array}{ll} \delta _{\left| q'\right| } \begin{bmatrix} \mathcal {O}\left( h_{\mathrm {max}}^2\right) \\ 0\\ 0 \end{bmatrix} ,&{}\text { w.r.t }(11),\\ \delta _{\left| q'\right| } \begin{bmatrix} \mathcal {O}\left( h_{\mathrm {max}}\right) (\lambda -q_{\mathrm {max}})^{-\frac{1}{2}}\\ 0\\ 0 \end{bmatrix} ,&{}\text { w.r.t }(12), \end{array}\right. } \end{aligned}$$

and

$$\begin{aligned}&\phi \left( \rho \left( \mathbf {D}_{\lambda ,0}(c_k,t)\right) \right) \mathbf {\fancyscript{C}}_{\mathbf {D}_{\lambda ,0}(c_k,t)}^2\mathbf {\pi }\left( \mathbf {B}_{\lambda ,0}(c_k,t)\right) \\&\quad = \begin{bmatrix} 0\\ -2\phi \left( \rho \left( \mathbf {D}_{\lambda ,0}(c_k,t)\right) \right) \frac{q(t)-\frac{\int _{c_k}^t q(\xi )d\xi }{t-c_k}}{t-c_k}(t-c_k)^3\\ \frac{1}{2}\phi \left( \rho \left( \mathbf {D}_{\lambda ,0}(c_k,t)\right) \right) \rho ^2\left( \mathbf {D}_{\lambda ,0}(c_k,t)\right) \frac{q(t)-\frac{\int _{c_k}^t q(\xi )d\xi }{t-c_k}}{t-c_k}(t-c_k) \end{bmatrix}\\&\quad = {\left\{ \begin{array}{ll} \delta _{\left| q'\right| } \begin{bmatrix} 0\\ \mathcal {O}\left( h_{\mathrm {max}}^3\right) \\ \mathcal {O}\left( h_{\mathrm {max}}\right) \end{bmatrix} ,&{}\text { w.r.t }(11),\\ \delta _{\left| q'\right| } \begin{bmatrix} 0\\ \mathcal {O}\left( h_{\mathrm {max}}\right) (\lambda -q_{\mathrm {max}})^{-1}\\ \mathcal {O}\left( h_{\mathrm {max}}\right) \end{bmatrix} ,&{}\text { w.r.t }(12), \end{array}\right. } \end{aligned}$$

which, according to Theorem 3, lead to

$$\begin{aligned} \mathbf {\pi }\left( \mathbf {B}_{\lambda ,1}(c_k,t)\right)&=\varphi \left( \rho \left( \mathbf {D}_{\lambda ,0}(c_k,t)\right) \right) \mathbf {\fancyscript{C}}_{\mathbf {D}_{\lambda ,0}(c_k,t)}\mathbf {\pi }\left( \mathbf {B}_{\lambda ,0}(c_k,t)\right) \nonumber \\&\quad +\phi \left( \rho \left( \mathbf {D}_{\lambda ,0}(c_k,t)\right) \right) \mathbf {\fancyscript{C}}_{\mathbf {D}_{\lambda ,0}(c_k,t)}^2\mathbf {\pi }\left( \mathbf {B}_{\lambda ,0}(c_k,t)\right) \nonumber \\&= {\left\{ \begin{array}{ll} \delta _{\left| q'\right| } \begin{bmatrix} \mathcal {O}\left( h_{\mathrm {max}}^2\right) \\ \mathcal {O}\left( h_{\mathrm {max}}^3\right) \\ \mathcal {O}\left( h_{\mathrm {max}}\right) \end{bmatrix} ,&{}\text { w.r.t }(11),\\ \delta _{\left| q'\right| } \begin{bmatrix} \mathcal {O}\left( h_{\mathrm {max}}\right) (\lambda -q_{\mathrm {max}})^{-\frac{1}{2}}\\ \mathcal {O}\left( h_{\mathrm {max}}\right) (\lambda -q_{\mathrm {max}})^{-1}\\ \mathcal {O}\left( h_{\mathrm {max}}\right) \end{bmatrix} ,&{}\text { w.r.t }(12). \end{array}\right. } \end{aligned}$$

1.3 B.3. Estimating \(\mathbf {\pi }\left( \mathbf {B}_{\lambda ,l}(c_k,t)\right) \) and \(\mathbf {\pi }\left( \mathbf {D}_{\lambda ,l}(c_k,t)\right) \) for \(l\ge 2\)

Follows by induction.

1.3.1 B.3.1. First step: \(l=2\)

Given Definition 4 and the uniform estimates for \(\mathbf {\pi }\left( \mathbf {B}_{\lambda ,1}(c_k,t)\right) \) in the previous subsection, it is now clear that

$$\begin{aligned} \varphi \left( \rho \left( \mathbf {D}_{\lambda ,1}(c_k,t)\right) \right)&= {\left\{ \begin{array}{ll} -\frac{1}{2}+\delta _{\left| q'\right| }^2\mathcal {O}\left( h_{\mathrm {max}}^6\right) ,&{}\text { w.r.t }(11),\\ -\frac{1}{2}+\delta _{\left| q'\right| }^2\mathcal {O}\left( h_{\mathrm {max}}^{4}\right) \left( \lambda -q_{\mathrm {max}}\right) ^{-1},&{}\text { w.r.t }(12), \end{array}\right. } \\ \phi \left( \rho \left( \mathbf {D}_{\lambda ,1}(c_k,t)\right) \right)&= {\left\{ \begin{array}{ll} \frac{1}{3}+\delta _{\left| q'\right| }^2\mathcal {O}\left( h_{\mathrm {max}}^6\right) ,&{}\text { w.r.t }(11),\\ \frac{1}{3}+\delta _{\left| q'\right| }^2\mathcal {O}\left( h_{\mathrm {max}}^{4}\right) \left( \lambda -q_{\mathrm {max}}\right) ^{-1},&{}\text { w.r.t }(12), \end{array}\right. } \end{aligned}$$

and, according to Theorem 3, that

$$\begin{aligned} \mathbf {\pi }\left( \mathbf {B}_{\lambda ,2}(c_k,t)\right)&=\varphi \left( \rho \left( \mathbf {D}_{\lambda ,1}(c_k,t)\right) \right) \mathbf {\fancyscript{C}}_{\mathbf {D}_{\lambda ,1}(c_k,t)}\mathbf {\pi }\left( \mathbf {B}_{\lambda ,1}(c_k,t)\right) \\&\quad +\phi \left( \rho \left( \mathbf {D}_{\lambda ,1}(c_k,t)\right) \right) \mathbf {\fancyscript{C}}_{\mathbf {D}_{\lambda ,1}(c_k,t)}^2\mathbf {\pi }\left( \mathbf {B}_{\lambda ,1}(c_k,t)\right) \\&= {\left\{ \begin{array}{ll} \delta _{\left| q'\right| }^2 \begin{bmatrix} \mathcal {O}\left( h_{\mathrm {max}}^5\right) \\ \mathcal {O}\left( h_{\mathrm {max}}^6\right) \\ \mathcal {O}\left( h_{\mathrm {max}}^4\right) \end{bmatrix} ,&{}\text { w.r.t }(11),\\ \delta _{\left| q'\right| }^2 \begin{bmatrix} \mathcal {O}\left( h_{\mathrm {max}}^{3}\right) (\lambda -q_{\mathrm {max}})^{-1}\\ \mathcal {O}\left( h_{\mathrm {max}}^{3}\right) (\lambda -q_{\mathrm {max}})^{-\frac{3}{2}}\\ \mathcal {O}\left( h_{\mathrm {max}}^{3}\right) (\lambda -q_{\mathrm {max}})^{-\frac{1}{2}} \end{bmatrix} ,&{}\text { w.r.t }(12). \end{array}\right. } \end{aligned}$$

1.3.2 B.3.2. Induction step: \(l\Rightarrow l+1\)

Given the induction claim, it is now clear that

$$\begin{aligned} \varphi \left( \rho \left( \mathbf {D}_{\lambda ,l}(c_k,t)\right) \right)&= {\left\{ \begin{array}{ll} -\frac{1}{2}+\delta _{\left| q'\right| }^{2^l}\mathcal {O}\left( h_{\mathrm {max}}^{3\times 2^l}\right) ,&{}\text { w.r.t }(11),\\ -\frac{1}{2}+\delta _{\left| q'\right| }^{2^l}\mathcal {O}\left( h_{\mathrm {max}}^{2^{l+1}}\right) (\lambda -q_{\mathrm {max}})^{-2^{l-1}},&{}\text { w.r.t }(12) \end{array}\right. } \\ \phi \left( \rho \left( \mathbf {D}_{\lambda ,l}(c_k,t)\right) \right)&= {\left\{ \begin{array}{ll} \frac{1}{3}+\delta _{\left| q'\right| }^{2^l}\mathcal {O}\left( h_{\mathrm {max}}^{3\times 2^l}\right) ,&{}\text { w.r.t }(11),\\ \frac{1}{3}+\delta _{\left| q'\right| }^{2^l}\mathcal {O}\left( h_{\mathrm {max}}^{2^{l+1}}\right) (\lambda -q_{\mathrm {max}})^{-2^{l-1}},&{}\text { w.r.t }(12), \end{array}\right. } \end{aligned}$$

and, according to Theorem 3, that

$$\begin{aligned} \mathbf {\pi }\left( \mathbf {B}_{\lambda ,l+1}(c_k,t)\right)&=\varphi \left( \rho \left( \mathbf {D}_{\lambda ,l}(c_k,t)\right) \right) \mathbf {\fancyscript{C}}_{\mathbf {D}_{\lambda ,l}(c_k,t)}\mathbf {\pi }\left( \mathbf {B}_{\lambda ,l}(c_k,t)\right) \\&\quad +\phi \left( \rho \left( \mathbf {D}_{\lambda ,l}(c_k,t)\right) \right) \mathbf {\fancyscript{C}}_{\mathbf {D}_{\lambda ,l}(c_k,t)}^2\mathbf {\pi }\left( \mathbf {B}_{\lambda ,l}(c_k,t)\right) \\&= {\left\{ \begin{array}{ll} \delta _{\left| q'\right| }^{2^l} \begin{bmatrix} \mathcal {O}\left( h_{\mathrm {max}}^{3\times 2^{l}-1}\right) \\ \mathcal {O}\left( h_{\mathrm {max}}^{3\times 2^{l}}\right) \\ \mathcal {O}\left( h_{\mathrm {max}}^{3\times 2^{l}-2}\right) \end{bmatrix} ,&{}\text { w.r.t }(11),\\ \delta _{\left| q'\right| }^{2^l} \begin{bmatrix} \mathcal {O}\left( h_{\mathrm {max}}^{2^{l+1}-1}\right) (\lambda -q_{\mathrm {max}})^{-\frac{2^{l}}{2}}\\ \mathcal {O}\left( h_{\mathrm {max}}^{2^{l+1}-1}\right) (\lambda -q_{\mathrm {max}})^{-\frac{2^{l}+1}{2}}\\ \mathcal {O}\left( h_{\mathrm {max}}^{2^{l+1}-1}\right) (\lambda -q_{\mathrm {max}})^{-\frac{2^{l}-1}{2}} \end{bmatrix} ,&{}\text { w.r.t }(12). \end{array}\right. } \end{aligned}$$

Appendix C. Proof of Theorem 5

Recall the Baker–Campbell–Hausdorff-type formulas

$$\begin{aligned} e^{\mathbf {X}}e^{\mathbf {Y}}&=e^{\mathbf {X}+\mathbf {Y}+\frac{1}{2}\left[ \mathbf {X},\mathbf {Y}\right] +\frac{1}{12}\left( \left[ \mathbf {X},\left[ \mathbf {X},\mathbf {Y}\right] \right] +\left[ \mathbf {Y},\left[ \mathbf {Y},\mathbf {X}\right] \right] \right) +\cdots }\end{aligned}$$
(38)
$$\begin{aligned} e^{\mathbf {X}}e^{\mathbf {Y}}e^{-\mathbf {X}}&=e^{\mathbf {Y}+\left[ \mathbf {X},\mathbf {Y}\right] +\frac{1}{2}\left[ \mathbf {X},\left[ \mathbf {X},\mathbf {Y}\right] \right] +\frac{1}{6}\left[ \mathbf {X},\left[ \mathbf {X},\left[ \mathbf {X},\mathbf {Y}\right] \right] \right] +\cdots }\end{aligned}$$
(39)
$$\begin{aligned}&=\exp \left( \mathrm {Ad}_{\exp \left( \mathbf {X}\right) }\left( \mathbf {Y}\right) \right) . \end{aligned}$$
(40)

The local error can be written as

$$\begin{aligned}&\mathbf {L}_{\lambda ,n}(c_k,c_{k+1})\nonumber \\&\quad =\log \left( \mathbf {F}_{\lambda }(c_k,c_{k+1})\tilde{\mathbf {F}}_{\lambda ,n}^{-1}(c_k,c_{k+1})\right) \nonumber \\&\quad =\log \left( \left( \prod _{l=0}^{\infty }e^{\mathbf {D}_{\lambda ,l}(c_k,c_{k+1})}\right) \left( \prod _{l=0}^{n}e^{\mathbf {D}_{\lambda ,l}(c_k,c_{k+1})}\right) ^{-1}\right) \nonumber \\&\quad =\log \left( \left( \prod _{l=0}^{n}e^{\mathbf {D}_{\lambda ,l}(c_k,c_{k+1})}\right) \left( \prod _{l=n+1}^{\infty }e^{\mathbf {D}_{\lambda ,l}(c_k,c_{k+1})}\right) \left( \prod _{l=0}^{n}e^{\mathbf {D}_{\lambda ,l}(c_k,c_{k+1})}\right) ^{-1}\right) \nonumber \\&\quad =\log \left( \left( \prod _{l=0}^{n}e^{\mathbf {D}_{\lambda ,l}(c_k,c_{k+1})}\right) e^{\mathbf {D}_{\lambda ,n+1}(c_k,c_{k+1})+\text {h.o.t.}}\left( \prod _{l=0}^{n}e^{\mathbf {D}_{\lambda ,l}(c_k,c_{k+1})}\right) ^{-1}\right) \nonumber \\&\quad =\log \left( e^{\mathbf {D}_{\lambda ,0}(c_k,c_{k+1})}e^{\mathbf {D}_{\lambda ,n+1}(c_k,c_{k+1})+\text {h.o.t.}}e^{-\mathbf {D}_{\lambda ,0}(c_k,c_{k+1})}\right) \nonumber \\&\quad =\mathrm {Ad}_{\exp \left( \mathbf {D}_{\lambda ,0}(c_k,c_{k+1})\right) }\left( \mathbf {D}_{\lambda ,n+1}(c_k,c_{k+1})+\text {h.o.t.}\right) \nonumber \\&\quad =\mathrm {Ad}_{\exp \left( \mathbf {D}_{\lambda ,0}(c_k,c_{k+1})\right) }\left( \mathbf {D}_{\lambda ,n+1}(c_k,c_{k+1})\right) +\text {h.o.t.} \end{aligned}$$
(41)

where the first and second equalities are due to Definition 6, the fourth equality is due to (38), the fifth equality is due to (39), and the sixth equality is due to (40). The local error expression (41), together with Theorem 4, yields the desired estimate.

The global error obeys the recursion relation with initial condition

$$\begin{aligned} \mathbf {G}_{\lambda ,n}(c_1)=\mathbf {L}_{\lambda ,n}(a,c_1) \end{aligned}$$
(42)

and general rule

$$\begin{aligned}&\mathbf {G}_{\lambda ,n}(c_{k+1})\nonumber \\&\quad =\log \left( \mathbf {Y}_{\lambda }(c_{k+1})\tilde{\mathbf {Y}}_{\lambda ,n}^{-1}(c_{k+1})\right) \nonumber \\&\quad =\log \left( \mathbf {F}_{\lambda }(c_k,c_{k+1})\mathbf {Y}_{\lambda }(c_k)\tilde{\mathbf {Y}}_{\lambda ,n}^{-1}(c_k)\tilde{\mathbf {F}}_{\lambda ,n}^{-1}(c_k,c_{k+1})\right) \nonumber \\&\quad =\log \left( \mathbf {F}_{\lambda }(c_k,c_{k+1})e^{\mathbf {G}_{\lambda ,n}(c_k)}\tilde{\mathbf {F}}_{\lambda ,n}^{-1}(c_k,c_{k+1})\right) \nonumber \\&\quad =\log \left( e^{\mathbf {L}_{\lambda ,n}(c_k,c_{k+1})}\tilde{\mathbf {F}}_{\lambda ,n}(c_k,c_{k+1})e^{\mathbf {G}_{\lambda ,n}(c_k)}\tilde{\mathbf {F}}_{\lambda ,n}^{-1}(c_k,c_{k+1})\right) \nonumber \\&\quad =\log \left( e^{\mathbf {L}_{\lambda ,n}(c_k,c_{k+1})}\left( \prod _{l=0}^{n}e^{\mathbf {D}_{\lambda ,l}(c_k,c_{k+1})}\right) e^{\mathbf {G}_{\lambda ,n}(c_k)}\left( \prod _{l=0}^{n}e^{\mathbf {D}_{\lambda ,l}(c_k,c_{k+1})}\right) ^{-1}\right) \nonumber \\&\quad =\log \left( e^{\mathbf {L}_{\lambda ,n}(c_k,c_{k+1})}e^{\mathbf {D}_{\lambda ,0}(c_k,c_{k+1})}e^{\mathbf {G}_{\lambda ,n}(c_k)+\text {h.o.t.}}e^{-\mathbf {D}_{\lambda ,0}(c_k,c_{k+1})}\right) \nonumber \\&\quad =\log \left( e^{\mathbf {L}_{\lambda ,n}(c_k,c_{k+1})}\exp \left( \mathrm {Ad}_{\exp \left( \mathbf {D}_{\lambda ,0}(c_k,c_{k+1})\right) }\left( \mathbf {G}_{\lambda ,n}(c_k)+\text {h.o.t.}\right) \right) \right) \nonumber \\&\quad =\log \left( e^{\mathbf {L}_{\lambda ,n}(c_k,c_{k+1})}\exp \left( \mathrm {Ad}_{\exp \left( \mathbf {D}_{\lambda ,0}(c_k,c_{k+1})\right) }\left( \mathbf {G}_{\lambda ,n}(c_k)\right) +\text {h.o.t.}\right) \right) \nonumber \\&\quad =\mathbf {L}_{\lambda ,n}(c_k,c_{k+1})+\mathrm {Ad}_{\exp \left( \mathbf {D}_{\lambda ,0}(c_k,c_{k+1})\right) }\left( \mathbf {G}_{\lambda ,n}(c_k)\right) +\text {h.o.t.} \end{aligned}$$
(43)

where the first, second, third, fourth and fifth equalities are due to Definition 6, the sixth equality is due to (39), the seventh equality is due to (40), and the last equality is due to (38). The global error expressions (42) and (43) lead to

$$\begin{aligned} \mathbf {G}_{\lambda ,n}(c_{k+1})&=\mathrm {Ad}_{\exp \left( \mathbf {D}_{\lambda ,0}(c_k,c_{k+1})\right) }\left( \mathbf {D}_{\lambda ,n+1}(c_k,c_{k+1})\right) \\&\quad +\mathrm {Ad}_{\exp \left( \mathbf {D}_{\lambda ,0}(c_k,c_{k+1})\right) \exp \left( \mathbf {D}_{\lambda ,0}(c_{k-1},c_k)\right) }\left( \mathbf {D}_{\lambda ,n+1}(c_{k-1},c_k)\right) \\&\quad +\cdots +\\&\quad +\mathrm {Ad}_{\exp \left( \mathbf {D}_{\lambda ,0}(c_k,c_{k+1})\right) \cdots \exp \left( \mathbf {D}_{\lambda ,0}(a,c_1)\right) }\left( \mathbf {D}_{\lambda ,n+1}(a,c_1)\right) \\&\quad +\text {h.o.t.} \end{aligned}$$

which, together with (6) and Theorem 4, result in the desired estimate.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramos, A.G.C.P., Iserles, A. Numerical solution of Sturm–Liouville problems via Fer streamers. Numer. Math. 131, 541–565 (2015). https://doi.org/10.1007/s00211-014-0695-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-014-0695-0

Mathematics Subject Classification

Navigation