Skip to main content
Log in

A combined finite volume–nonconforming finite element scheme for compressible two phase flow in porous media

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We propose and analyze a combined finite volume–nonconforming finite element scheme on general meshes to simulate the two compressible phase flow in porous media. The diffusion term, which can be anisotropic and heterogeneous, is discretized by piecewise linear nonconforming triangular finite elements. The other terms are discretized by means of a cell-centered finite volume scheme on a dual mesh, where the dual volumes are constructed around the sides of the original mesh. The relative permeability of each phase is decentred according the sign of the velocity at the dual interface. This technique also ensures the validity of the discrete maximum principle for the saturation under a non restrictive shape regularity of the space mesh and the positiveness of all transmissibilities. Next, a priori estimates on the pressures and a function of the saturation that denote capillary terms are established. These stabilities results lead to some compactness arguments based on the use of the Kolmogorov compactness theorem, and allow us to derive the convergence of a subsequence of the sequence of approximate solutions to a weak solution of the continuous equations, provided the mesh size tends to zero. The proof is given for the complete system when the density of the each phase depends on its own pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. This means that there exists a positive constant \(c\) such that for all \(a, b \in [0,\mathcal {B}(1)],\) one has \(|\mathcal {B}^{-1}(a)-\mathcal {B}^{-1}(b)|\le c|a - b|^{\theta }\).

References

  1. Aziz, K., Settari, A.: Petroleum Reservoir Simulation. Applied Science Publishers LTD, London (1979)

    Google Scholar 

  2. Barrett, J.W., Knabner, P.: Finite element approximation of the transport of reactive solutes in porous media. ii. error estimates for equilibrium adsorption processes. SIAM J. Numer. Anal. 34(2), 455–479 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bendahmane, M., Khalil, Z., Saad, M.: Convergence of a finite volume scheme for gas water flow in a multi-dimensional porous media. Math. Models Methods Appl. Sci. 24(1), 145–185 (2014)

  4. Brenier, Y., Jaffré, J.: Upstream differencing for multiphase flow in reservoir simulation. SIAM J. Numer. Anal. 28, 685–696 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  5. Brezis, H.: Analyse fonctionnelle. Collection of Applied Mathematics for the Master’s Degree, Theory and applications. Masson, Paris (1983)

    Google Scholar 

  6. Caro, F., Saad, B., Saad, M.: Two-component two-compressible flow in a porous medium. Acta Appl. Math. 117(1), 15–46 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chavent, G., Jaffré, J.: Mathematical Models and Finite Elements for Reservoir Simulation: Single Phase, Multiphase, and Multicomponent Flows Through Porous Media. Elsevier Science Publishers B. V., North Holland (1986)

  8. Chen, Z., Ewing, R.E.: Degenerate two-phase incompressible flow. iii. Sharp error estimates. Numer. Math. 90(2), 215–240 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ciarlet, P.G.: Basic error estimates for elliptic problems. In: Handbook of Numerical Analysis, North-Holland (1991)

  10. Coudiére, Y., Vila, J.P., Villedieu, P.: Convergence rate of a finite volume scheme for a two-dimensional convection-diffusion problem. M2AN. Math. Model. Numer. Anal. 33(3), 493–516 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dawson, C.: Analysis of an upwind-mixed finite element method for nonlinear contaminant transport equations. SIAM J. Numer. Anal. 35(5), 1709–1724 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Debiez, C., Dervieux, A., Mer, K., Nkonga, B.: Computation of unsteady flows with mixed finite volume/finite element upwind methods. Internat. J. Numer. Methods Fluids 27(1–4, Special Issue), 193–206 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  13. Evans, L.: Partial Differential Equations. American Mathematical Society, Washington, D.C (2010)

    MATH  Google Scholar 

  14. Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. In: Handbook of Numerical Analysis, North-Holland (2000)

  15. Eymard, R., Gallouët, T., Herbin, R.: A finite volume scheme for anisotropic diffusion problems. C. R. Math. Acad. Sci. Paris 339(4), 299–302 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Eymard, R., Herbin, R., Michel, A.: Mathematical study of a petroleum-engineering scheme. Math. Model. Numer. Anal. 37(6), 937–972 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  17. Eymard, R., Hilhorst, D., Vohralik, M.: A combined finite volume-nonconforming/mixed-hybrid finite element scheme for degenerate parabolic problems. Numer. Math. 105, 73–131 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Faille, I.: A control volume method to solve an elliptic equation on a two-dimensional irregular mesh. Comput. Methods Appl. Mech. Eng. 100(2), 275–290 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  19. Feistauer, M., Felcman, J., Lukáčová, M.: On the convergence of a combined finite volume-finite element method for nonlinear convection. Numer. Methods Partial Differ. Equ. 13(2), 163–190 (1997)

    Article  MATH  Google Scholar 

  20. Galusinski, C., Saad, M.: Two compressible immiscible fluids in porous media. J. Differ. Equ. 244, 1741–1783 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  21. Khalil, Z., Saad, M.: Solutions to a model for compressible immiscible two phase flow in porous media. Electron. J. Differ. Equ. 2010(122), 1–33 (2010)

    MathSciNet  Google Scholar 

  22. Michel, A.: A finite volume scheme for the simulation of two-phase incompressible flow in porous media. SIAM J. Numer. Anal. 41, 1301–1317 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  23. Nochetto, R.H., Schmidt, A., Verdi, C.: A posteriori error estimation and adaptivity for degenerate parabolic problems. Math. Comput. 69(229), 1–24 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  24. Peaceman, D.W.: Fundamentals of Numerical Reservoir Simulation. Elsevier Scientific Publishing, Amsterdam (1977)

    Google Scholar 

  25. Rulla, J., Walkington, N.J.: Optimal rates of convergence for degenerate parabolic problems in two dimensions. SIAM J. Numer. Anal. 33(1), 56–67 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  26. Saad, B., Saad, M.: Study of full implicit petroleum engineering finite volume scheme for compressible two phase flow in porous media. SIAM J. Numer. Anal. 51(1), 716–741 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  27. Vohralik, M.: On the discrete poincaré-friedrichs inequalities for nonconforming approximations of the sobolev space h1. Numer. Funct. Anal. Optim. 26(78), 925–952 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mazen Saad.

Additional information

Research reported in this publication was supported by the King Abdullah University of Science and Technology (KAUST) and this work is partially supported by GDR MOMAS.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saad, B., Saad, M. A combined finite volume–nonconforming finite element scheme for compressible two phase flow in porous media. Numer. Math. 129, 691–722 (2015). https://doi.org/10.1007/s00211-014-0651-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-014-0651-z

Mathematics Subject Classification

Navigation