Skip to main content

Advertisement

Log in

White adipocyte-derived exosomal miR-23b inhibits thermogenesis by targeting Elf4 to regulate GLP-1R transcription

  • Research
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Promoting non-trembling thermogenesis of brown adipose tissue (BAT) and browning of white adipose tissue (WAT) helps prevent obesity. MiR-23b is highly expressed in adipose tissue-derived exosomes obtained from obese people, but the role of exosomal miR-23b in regulating thermogenesis and obesity progression remains to be further explored. Here, a mouse obesity model was established through high-fat diet (HFD), and inguinal WAT (iWAT)-derived exosomes and miR-23b antagomir were administered by intraperitoneal injection. The results showed that WAT-derived exosomal miR-23b upregulated body weight and adipocyte hypertrophy and enhanced insulin resistance. Moreover, exosomal miR-23b restrained mtDNA copy number and the expression of genes related to thermogenesis and mitochondrial biogenesis in BAT, and suppressed the expression of WAT browning-related genes under cold stimulation, indicating that exosomal miR-23b hindered non-trembling thermogenesis of BAT and WAT browning. Mechanism studies found that miR-23b targeted Elf4 to inhibit its expression. And Elf4 bound to the GLP-1R promoter region to promote GLP-1R transcription. In addition, silencing miR-23b effectively abolished the inhibitory effect of WAT-derived exosomes on thermogenic gene expression and mitochondrial respiration in adipocytes isolated from BAT and iWAT, which was reversed by GLP-1R knockdown. In conclusion, WAT-derived exosomal miR-23b suppressed thermogenesis by targeting Elf4 to regulate GLP-1R transcription, which contributed to the progression of obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Borji M, Nourbakhsh M, Shafiee SM, Owji AA, Abdolvahabi Z, Hesari Z et al (2019) Down-Regulation of SIRT1 Expression by mir-23b Contributes to Lipid Accumulation in HepG2 Cells. Biochem Genet 57(4):507–521

    Article  CAS  PubMed  Google Scholar 

  • Campbell JE, Drucker DJ (2013) Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metab 17(6):819–837

    Article  CAS  PubMed  Google Scholar 

  • Challa TD, Beaton N, Arnold M, Rudofsky G, Langhans W, Wolfrum C (2012) Regulation of adipocyte formation by GLP-1/GLP-1R signaling. J Biol Chem 287(9):6421–6430

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Buyel JJ, Hanssen MJ, Siegel F, Pan R, Naumann J et al (2016) Exosomal microRNA miR-92a concentration in serum reflects human brown fat activity. Nat Commun 7(1):1–9

    Google Scholar 

  • Chen D, Wu X, Xia M, Wu F, Ding J, Jiao Y et al (2017) Upregulated exosomic miR23b3p plays regulatory roles in the progression of pancreatic cancer. Oncol Rep 38(4):2182–2188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colombo M, Raposo G, Théry C (2014) Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Bi 30:255–289

    Article  CAS  Google Scholar 

  • Cui X, You L, Li Y, Zhu L, Zhang F, Xie K et al (2016) A transcribed ultraconserved noncoding RNA, uc.417, serves as a negative regulator of brown adipose tissue thermogenesis. FASEB J 30(12):4301–4312

    Article  CAS  PubMed  Google Scholar 

  • Deng Z-b, Poliakov A, Hardy RW, Clements R, Liu C, Liu Y et al (2009) Adipose tissue exosome-like vesicles mediate activation of macrophage-induced insulin resistance. Diabetes 58(11):2498–2505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dos Santos TW, Miranda J, Teixeira L, Aiastui A, Matheu A, Gambero A et al (2018) Yerba Mate Stimulates Mitochondrial Biogenesis and Thermogenesis in High-Fat-Diet-Induced Obese Mice. Mol Nutr Food Res 31:e1800142

    Article  Google Scholar 

  • Fenzl A, Kiefer FW (2014) Brown adipose tissue and thermogenesis. Horm Mol Biol Clin I 19(1):25–37

    CAS  Google Scholar 

  • Ferrante SC, Nadler EP, Pillai DK, Hubal MJ, Wang Z, Wang JM et al (2015) Adipocyte-derived exosomal miRNAs: a novel mechanism for obesity-related disease. Pediatr Res 77(3):447–454

    Article  CAS  PubMed  Google Scholar 

  • Gastebois C, Chanon S, Rome S, Durand C, Pelascini E, Jalabert A et al (2016) Transition from physical activity to inactivity increases skeletal muscle miR-148b content and triggers insulin resistance. Physiol Rep 4(17):e12902

    Article  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Garcia I, Milbank E, Dieguez C, Lopez M, Contreras C (2019) Glucagon, GLP-1 and Thermogenesis. Int J Mol Sci 20(14):3445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He C, Zheng S, Luo Y, Wang B (2018) Exosome theranostics: biology and translational medicine. Theranostics 8(1):237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heppner KM, Perez-Tilve D (2015) GLP-1 based therapeutics: simultaneously combating T2DM and obesity. Front Neurosci 9:92

    Article  PubMed  PubMed Central  Google Scholar 

  • Kodo K, Sugimoto S, Nakajima H, Mori J, Itoh I, Fukuhara S et al (2017) Erythropoietin (EPO) ameliorates obesity and glucose homeostasis by promoting thermogenesis and endocrine function of classical brown adipose tissue (BAT) in diet-induced obese mice. PLoS ONE 12(3):e0173661

    Article  PubMed  PubMed Central  Google Scholar 

  • Kosti A, Du L, Shivram H, Qiao M, Burns S, Garcia JG et al (2020) ELF4 Is a Target of miR-124 and Promotes Neuroblastoma Proliferation and Undifferentiated State. Mol Cancer Res 18(1):68–78

    Article  CAS  PubMed  Google Scholar 

  • Li S, Mi L, Yu L, Yu Q, Liu T, Wang GX et al (2017) Zbtb7b engages the long noncoding RNA Blnc1 to drive brown and beige fat development and thermogenesis. Proc Natl Acad Sci USA 114(34):E7111–E7120

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Lopez M, Dieguez C, Nogueiras R (2015) Hypothalamic GLP-1: the control of BAT thermogenesis and browning of white fat. Adipocyte 4(2):141–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan MH, Koh YC, Lee TL, Wang B, Chen WK, Nagabhushanam K et al (2019) Resveratrol and Oxyresveratrol Activate Thermogenesis via Different Transcriptional Coactivators in High-Fat Diet-Induced Obese Mice. J Agric Food Chem 67(49):13605–13616

    Article  CAS  PubMed  Google Scholar 

  • Pei Y, Otieno D, Gu I, Lee SO, Parks JS, Schimmel K et al (2021) Effect of quercetin on nonshivering thermogenesis of brown adipose tissue in high-fat diet-induced obese mice. J Nutr Biochem 88:108532

    Article  CAS  PubMed  Google Scholar 

  • Shoelson SE, Herrero L, Naaz A (2007) Obesity, inflammation, and insulin resistance. Gastroenterology 132(6):2169–2180

    Article  CAS  PubMed  Google Scholar 

  • Song G, Kim HL, Jung Y, Park J, Lee JH, Ahn KS et al (2020) Fruit of Hovenia dulcis Thunb. Induces Nonshivering Thermogenesis through Mitochondrial Biogenesis and Activation by SIRT1 in High-Fat Diet-Fed Obese Mice and Primary Cultured Brown Adipocytes. J Agric Food Chem 68(24):6715–6725

    Article  CAS  PubMed  Google Scholar 

  • Suico MA, Shuto T, Kai H (2017) Roles and regulations of the ETS transcription factor ELF4/MEF. J Mol Cell Biol 9(3):168–177

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vendrell J, El Bekay R, Peral B, Garcia-Fuentes E, Megia A, Macias-Gonzalez M et al (2011) Study of the potential association of adipose tissue GLP-1 receptor with obesity and insulin resistance. Endocrinology 152(11):4072–4079

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Xue H, Zhu Z, Gao J, Zhao M, Ma Z (2020) Expression of serum exosomal miR-23b-3p in non-small cell lung cancer and its diagnostic efficacy. Oncol Lett 20(4):30

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wei Y, Jing J, Peng Z, Liu X, Wang X (2021) Acacetin ameliorates insulin resistance in obesity mice through regulating Treg/Th17 balance via MiR-23b-3p/NEU1 Axis. BMC Endocr Disord 21(1):57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia B, Shi XC, Xie BC, Zhu MQ, Chen Y, Chu XY et al (2020) Urolithin A exerts antiobesity effects through enhancing adipose tissue thermogenesis in mice. PLoS Biol 18(3):e3000688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao L, Han Z, Zhao G, Xiao Y, Zhou X, Dai R et al (2020) Ginsenoside Rd Ameliorates High Fat Diet-Induced Obesity by Enhancing Adaptive Thermogenesis in a cAMP-Dependent Manner. Obesity 28(4):783–792

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Deng T, Ge S, Liu Y, Bai M, Zhu K et al (2019a) Exosome circRNA secreted from adipocytes promotes the growth of hepatocellular carcinoma by targeting deubiquitination-related USP7. Oncogene 38(15):2844–2859

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Chen L, Xiao B, Liu H, Su Y (2019b) Circ_0075932 in adipocyte-derived exosomes induces inflammation and apoptosis in human dermal keratinocytes by directly binding with PUM2 and promoting PUM2-mediated activation of AuroraA/NF-kappaB pathway. Biochem Biophys Res Commun 511(3):551–558

    Article  CAS  PubMed  Google Scholar 

  • Zhou C, Chen Y, He X, Zheng Z, Xue D (2020a) Functional Implication of Exosomal miR-217 and miR-23b-3p in the Progression of Prostate Cancer. Onco Targets Ther 13:11595–11606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou F, Guo J, Han X, Gao Y, Chen Q, Huang W et al (2020b) Cranberry Polyphenolic Extract Exhibits an Antiobesity Effect on High-Fat Diet-Fed Mice through Increased Thermogenesis. J Nutr 150(8):2131–2138

    Article  PubMed  Google Scholar 

  • Zhou X, Li Z, Qi M, Zhao P, Duan Y, Yang G et al (2020c) Brown adipose tissue-derived exosomes mitigate the metabolic syndrome in high fat diet mice. Theranostics 10(18):8197–8210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou T, Wang B, Li S, Liu Y, You J (2020) Dietary apple polyphenols promote fat browning in high-fat diet-induced obese mice through activation of adenosine monophosphate-activated protein kinase α. J Sci Food Agr 100(6):2389–2398

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This work was supported by the General project of Shaanxi Provincial Department of Science and Technology (2020JM609).

Author information

Authors and Affiliations

Authors

Contributions

The authors declare that all data were generated in-house and that no paper mill was used. Q.W. designed this work and wrote the manuscript, performed the experiments. R.M. collected and analyzed the data. J.D. organized the figures. All authors reviewed the manuscript.

Corresponding author

Correspondence to Qian Wang.

Ethics declarations

Ethics approval and consent to participate

All procedures performed in the studies involving animals were approved by the Animal Ethical and Welfare Committee of Xi’an Medical University (XYLS2019048).

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7855 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Du, J. & Ma, R. White adipocyte-derived exosomal miR-23b inhibits thermogenesis by targeting Elf4 to regulate GLP-1R transcription. Naunyn-Schmiedeberg's Arch Pharmacol (2024). https://doi.org/10.1007/s00210-024-02984-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00210-024-02984-1

Keywords

Navigation