Skip to main content

Advertisement

Log in

The monoaminergic pathways are involved in the antidepressant-like effect of quercetin

  • Research
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Quercetin, a plant-derived flavonoid, is an antioxidant and has demonstrated antidepressant and anti-inflammatory activities in several animal models. However, there is scanty information on the underlying mechanisms of its antidepressant property. This present study aimed at assessing the involvement of monoaminergic systems in the antidepressant-like activity of quercetin in experimental animals. Mice received varying doses of quercetin (25, 50 &100 mg/kg daily) and were then subjected to open field test (OPF), despair tests, the reserpine test, and the yohimbine lethality test (YLT). In addition, monoaminergic involvement was investigated by combining quercetin (100 mg/kg) with dopaminergic antagonists (haloperidol and sulpiride), adrenergic blockers (prazosin, propranolol and yohimbine), and serotonergic blockers/inhibitors (metergoline). The results showed that quercetin produced significant anti-immobility effects in the forced swim test (FST) and tail suspension test (TST), suggesting antidepressant activity. In addition, the potentiation of yohimbine lethality by quercetin further indicates its antidepressant-like property. This antidepressant action demonstrated was, however, blocked when quercetin was co-administered with dopaminergic, adrenergic and serotonergic antagonists, suggesting involvement of the monoaminergic system in the antidepressant action of quercetin. Nevertheless, quercetin did not significantly alter the locomotor activity of mice, which implies lack of stimulant effect. Taken together, these outcomes suggest that monoaminergic systems are likely involved in the anti-depressant effect of quercetin in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  • Abbas M, Subhan F, Rauf K, Khan M, Mohani N (2011) The involvement of biogenic amines in the antidepressant effect of Bacopa monnieri. Pharmacologyonline 1:112–123

    Google Scholar 

  • Abbasi-Maleki S, Maleki SG (2021) Antidepressant-like effects of Foeniculum vulgare essential oil and potential involvement of dopaminergic and serotonergic systems on mice in the forced swim test. Pharma Nutr 15:100241. https://doi.org/10.1016/j.phanu.2020.100241

    Article  Google Scholar 

  • Abreu TM, Monteiro VS, Martins ABS, Teles FB, da Conceição Rivanor RL, Mota ÉF, Macedo DS, de Vasconcelos SMM, Júnior JERH, Benevides NMB (2018) Involvement of the dopaminergic system in the antidepressant-like effect of the lectin isolated from the red marine alga Solieria filiformis in mice. Int J Biol Macromol 111:534–541

    Article  CAS  PubMed  Google Scholar 

  • Adeoluwa AO, Aderibigbe OA, Agboola IO, Olonode TE, Ben-Azu B (2019) Butanol fraction of Olax Subscorpioidea produces antidepressant effect: evidence for the involvement of monoaminergic neurotransmission. Drug Res 69(1):53–60. https://doi.org/10.1055/a-0651-7939

    Article  CAS  Google Scholar 

  • Adeoluwa OA, Aderibigbe AO, Bakre AG (2015) Evaluation of antidepressant-like effect of Olax Subscorpioidea Oliv. (Olacaceae) extract in mice. Drug Res 65(6):306–311. https://doi.org/10.1055/s-0034-1382010

    Article  CAS  Google Scholar 

  • Alzahrani A, Alghamdi A, Alqarni T, Alshareef R, Alzahrani A (2019) Prevalence and predictors of depression, anxiety, and stress symptoms among patients with type II diabetes attending primary healthcare centers in western region of Saudi Arabia. Int J Ment Heal Syst 13(1):1–7

    Google Scholar 

  • Babaei F, Mirzababaei M, Nassiri-Asl M (2018) Quercetin in food: possible mechanisms of its effect on memory. J Food Sci 83(9):2280–2287. https://doi.org/10.1111/1750-3841.14317

    Article  CAS  PubMed  Google Scholar 

  • Bakre AG, Odusanya ST, Olowoparija SF, Ojo OR, Olayemi JO, Aderibigbe AO (2020) Behavioral and biochemical evidences for antidepressant activity of ethanol extract of Jatropha curcas in mice subjected to chronic unpredictable mild stress. J Biol Nat 11:1–10

    CAS  Google Scholar 

  • Belujon P, Grace AA (2017) Dopamine system dysregulation in major depressive disorders. Int J Neuropsychopharmacol 20(12):1036–1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bourin M, Poncelet M, Chermat R, Simon P (1983) The value of the reserpine test in psychopharmacology. Arzneim Forsch Drug Res 33(8):1173–1176

    CAS  Google Scholar 

  • Brailovskaia J, Margraf J (2020) Relationship between depression symptoms, physical activity, and addictive social media use. Cyberpsychol Behav Soc Netw 23(12):818–822

    Article  PubMed  Google Scholar 

  • Bukhari IA, Dar A (2013) Behavioral profile of Hypericum perforatum (St. John’s Wort) extract. A comparison with standard antidepressants in animal models of depression. Eur Rev Med Pharmacologic Sci 17(8):1082–1089

    CAS  Google Scholar 

  • Celada P, Puig MV, Amargos-Bosch M, Adell A, Artigas F (2004) The therapeutic role of 5-HT1A and 5-HT2A receptors in depression. J Psychiatr Neurosci 29(4):252–265

    Google Scholar 

  • Danysz W, Kostowski W, Kozak W, Hauptmann M (1998) On the role of noradrenergic neurotransmission in the action of desipramine and amitriptyline in animal models of depression. Pol J Pharmacol Pharm 38(3):285–298

    Google Scholar 

  • D’Aquila PS, Collu M, Gessa GL, Serra G (2000) The role of dopamine in the mechanism of action of antidepressant drugs. Eur J Pharmacol 405(1–3):365–373

    Article  CAS  PubMed  Google Scholar 

  • Eduviere AT, Moke EG, Omogbiya AI, Otomewo LO, Olayinka JN, Aboyewa FE (2021) Quercetin modulates behavioural and biochemical alterations in stressed mice. Biosci Biotech Res Asia 18(4):681–689. https://doi.org/10.13005/bbra/2951

    Article  Google Scholar 

  • El-Haroun H, Ewida SF, Mohamed WM, Bashandy MA (2021) Atypical antipsychotic Lumateperone effects on the adrenal gland with possible beneficial effect of quercetin co-administration. Front Physiol 12:674550. https://doi.org/10.3389/fphys.2021.674550

    Article  PubMed  PubMed Central  Google Scholar 

  • Elhwuegi AS (2004) Central monoamines and their role in major depression. Prog Neuropsychopharmacol Biol Psychiatry 28(3):435–451

    Article  CAS  PubMed  Google Scholar 

  • Fang K, Li HR, Chen XX, Gao XR, Huang LL, Du AQ, Jiang C, Li H, Ge JF (2020) Quercetin alleviates LPS-induced depression-like behavior in rats via regulating BDNF-related imbalance of Copine 6 and TREM1/2 in the hippocampus and PFC. Front Pharmacol 10:1544. https://doi.org/10.3389/fphar.2019.01544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fedotova IO (2012) Stimulation of D2-receptors improves passive avoidance learning in female rats. Patol Fiziol Eksp Ter 1:53–56

    Google Scholar 

  • Gartlehner G, Gaynes BN, Amick HR, Asher G, Morgan LC, Coker-Schwimmer E, Forneris C, Boland E, Lux LJ, Gaylord S., Bann C, Pierl CB, Lohr KN Nonpharmacological versus pharmacological treatments for adult patients with major depressive disorder. Comparative Effectiveness Reviews No. 161.(Prepared by the RTI International-University of North Carolina Evidence-based Practice Center under Contract No. 290–2012–00008-I.) AHRQ Publication No. 15(16)-EHC031-EF. Rockville, MD: Agency for Healthcare Research and Quality; December 2015

  • Horowitz MA, Zunszain PA (2015) Neuroimmune and neuroendocrine abnormalities in depression: two sides of the same coin. Ann NY Acad Sci 1351(1):68–79. https://doi.org/10.1111/nyas.12781

    Article  ADS  CAS  PubMed  Google Scholar 

  • Institute for Quality and Efficiency in Health Care. (2006). InformedHealth.org [Internet]. Cologne, Germany: Institute for Quality and Efficiency in Health Care (IQWiG); Depression: Overview. [Updated 2020 Jun 18]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK279285/

  • Ishola IO, Agbaje EO, Akinleye MO, Ibeh CO, Adeyemi OO (2014) Antidepressant-like effect of the hydroethanolic leaf extract of Alchornea cordifolia (Schumach. & Thonn.) Mull. Arg. (Euphorbiaceae) in mice: involvement of monoaminergic system. J Ethnopharmacol 2(158):364–372

    Article  Google Scholar 

  • Kashyap D, Garg VK, Tuli HS, Yerer MB, Sak K, Sharma AK, Kumar M, Aggarwal V, Sandhu SS (2019) Fisetin and Quercetin: promising flavonoids with chemopreventive potential. Biomolecules 9(5):174. https://doi.org/10.3390/biom9050174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaufman J, DeLorenzo C, Choudhury S, Parsey RV (2016) The 5-HT1A receptor in major depressive disorder. Eur Neuropsychopharmacol 26(3):397–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Köhler S, Cierpinsky K, Kronenberg G, Adli M (2016) The serotonergic system in the neurobiology of depression: Relevance for novel antidepressants. J Psychopharmacol 30(1):13–22

    Article  PubMed  Google Scholar 

  • Li Y, Yao J, Han C, Yang J, Chaudhry MT, Wang S, Liu H, Yin Y (2016) Quercetin, inflammation and immunity. Nutrients, 8(3)167 . https://doi.org/10.3390/nu8030167

  • Linde K, Sigterman K, Kriston L, Rucker G, Susanne J, Meissner K, Schneider A (2015) Effectiveness of psychological treatments for depressive disorders in primary care: systematic review and meta-analysis. Annals Fam Med 13(1):56–68

    Article  Google Scholar 

  • Malick JB (1983) Potentiation of yohimbine-induced lethality in mice: predictor of antidepressant potential. Drug Dev Res 3:357–63

    Article  CAS  Google Scholar 

  • Masuda Y, Ohnuma S, Sugiyama T (2001) Alpha 2-adrenoceptor activity induces the antidepressant-like glycolipid in mouse forced swimming. Methods Find Exp Clin Pharmacol 23(1):19–21

    Article  CAS  PubMed  Google Scholar 

  • Mesram N, Nagapuri K, Banala RR, Nalagoni CR, Karnati PR (2017) Quercetin Treatment against NaF Induced Oxidative Stress Related Neuronal and Learning Changes in Developing Rats. J King Saud Univ - Sci 29(2):221–229. https://doi.org/10.1016/j.jksus.2016.04.002

    Article  Google Scholar 

  • Millan MJ (2004) The role of monoamines in the actions of established and “novel” antidepressant agents: a critical review. Eur J Pharmacol 500(1–3):371–384

    Article  ADS  CAS  PubMed  Google Scholar 

  • Montgomery SA (1999) Predicting response: Noradrenaline reuptake inhibition. Int Clin Psychopharmacol 14:21–26

    Article  Google Scholar 

  • Nautiyal KM, Hen R (2017) Serotonin receptors in depression: from A to B. F1000Res 6(123):1–12

    CAS  Google Scholar 

  • Onasanwo SA, Faborode SO, Ilenre KO (2016) Antidepressant-like potentials of Buchholzia coriacea seed extract: involvement of monoaminergic and cholinergic systems, and neuronal density in the hippocampus of adult mice. Nigerian J Physiologic Sci 31(1):93–99

    CAS  Google Scholar 

  • Papakostas GI (2006) Dopaminergic-based pharmacotherapies for depression. Eur Neuropsychopharmacol 16(6):391–402

    Article  CAS  PubMed  Google Scholar 

  • Porsolt RD, Bertin A, Jalfre M (1977) Behavioural despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther 229:327–336

    CAS  PubMed  Google Scholar 

  • Quinton RM (1963) The increase in the toxicity of yohimbine induced by imipramine and other drugs in mice. Br J Pharmacol Chemother 21(1):51–66. https://doi.org/10.1111/j.1476-5381.1963.tb01501.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Şahin TD, Gocmez SS, Duruksu G, Yazir Y, Utkan T (2020) Resveratrol and quercetin attenuate depressive-like behavior and restore impaired contractility of vas deferens in chronic stress-exposed rats: involvement of oxidative stress and inflammation. Naunyn-Schmiedeberg’s Arch Pharmacol 393(5):761–775. https://doi.org/10.1007/s00210-019-01781-5

    Article  CAS  Google Scholar 

  • Samad N, Saleem A, Yasmin F, Shehzad MA (2018) Quercetin protects against stress-induced anxiety- and depression-like behavior and improves memory in male mice. Physiol Res 67(5):795–808. https://doi.org/10.33549/physiolres.933776

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Mateo CC, Bonkanka CX, Prado B, Rabanal RM (2007) Antidepressant activity of some Hypericum reflexum L. fil. Extracts in the forced swimming test in mice. J Ethnopharmacol 112:115–121

    Article  CAS  PubMed  Google Scholar 

  • Steru L, Chermat R, Thierry B, Mico J, Lenegre A, Steru M, Simon P, Porsolt RD (1987) The automated tail suspension test: a computerized device which differentiates psychotropic drugs. Prog Neuro-Psychopharmacol Biol Psych 11(6):1–671

    Article  Google Scholar 

  • Suganthy N, Devi KP, Nabavi SF, Braidy N, Nabavi SM (2016) Bioactive effects of quercetin in the central nervous system: focusing on the mechanisms of actions. Biomed Pharmacother 84:892–908. https://doi.org/10.1016/j.biopha.2016.10.011

    Article  CAS  PubMed  Google Scholar 

  • Swiergiel AH, Dunn AJ (2007) Effects of interleukin-1beta and lipopolysaccharide on behavior of mice in the elevated plus-maze and open field tests. Pharmacol Biochem Behav 86:651–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor S, Stein MB (2006) The future of selective serotonin reuptake inhibitors (SSRIs) in psychiatric treatment. Med Hypotheses 66(1):14–21

    Article  CAS  PubMed  Google Scholar 

  • Vahid-Ansari F, Albert PR (2021) Rewiring of the serotonin system in major depression. Front Psychiatry 12:2275. https://doi.org/10.3389/fpsyt.2021.802581

    Article  Google Scholar 

  • Waehrens J, Gerlach J (1981) Bromocriptine and imipramine in endogenous depression a double-blind controlled trial in out-patients. J Affect Disord 3(2):193–202

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Yang J, Pan F, Ho RC, Huang JH (2020) Editorial: Neurotransmitters and emotions. Front Psychol 11(21):1–3. https://doi.org/10.3389/fpsyg.2020.00021

    Article  Google Scholar 

  • Willner P, Hale AS, Argyropoulos S (2005) Dopaminergic mechanism of antidepressant action in depressed patients. J Affect Dis 86(1):37–45

    Article  CAS  PubMed  Google Scholar 

  • Wulff K, Gatti S, Wettstein JG, Foster RG (2010) Sleep and circadian rhythm disruption in psychiatric and neurodegenerative disease. Nat Rev Neurosci 11:589–599

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki S, Miyoshi N, Kawabata K, Yasuda M, Shimoi K (2014) Quercetin-3-O-glucuronide Inhibits Noradrenaline-Promoted Invasion of MDA-MB-231 Human Breast Cancer Cells by Blocking β2-adrenergic Signaling. Arch Biochem Biophys 557:18–27. https://doi.org/10.1016/j.abb.2014.05.030

    Article  CAS  PubMed  Google Scholar 

  • Zhang JL, Liu M, Cui W, Yang L, Zhang CN (2020) Quercetin affects shoaling and anxiety behaviors in zebrafish: involvement of neuroinflammation and neuron apoptosis. Fish Shellfish Immunol 105:359–368. https://doi.org/10.1016/j.fsi.2020.06.058

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the technical staff of the Department of Pharmacology and Therapeutics, Afe Babalola University for their efforts.

Funding

This work was not funded by any agency.

Author information

Authors and Affiliations

Authors

Contributions

Adeoluwa OA: Conceptualization, investigation, methodology, writing- original draft

Eduviere: AT: Conceptualization, Investigation, Writing – review & editing

Otomewo LO: Roles/Writing – original draft

Adeoluwa OG: Data curation, Roles/Writing – original draft

Adeniyi FR: Roles/Writing- original draft

The authors declare that all data were generated in-house and that no paper mill was used.

Corresponding author

Correspondence to Olusegun Adebayo Adeoluwa.

Ethics declarations

Ethical approval

Ethical approval was sought from the Animal Care and Use Research Ethics Committee for the experimental procedures. It was carried out in line with the NIH's care and animal use guidelines.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 23 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adeoluwa, O.A., Eduviere, A.T., Adeoluwa, G.O. et al. The monoaminergic pathways are involved in the antidepressant-like effect of quercetin. Naunyn-Schmiedeberg's Arch Pharmacol 397, 2497–2506 (2024). https://doi.org/10.1007/s00210-023-02789-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-023-02789-8

Keywords

Navigation