Skip to main content

Advertisement

Log in

Polymer-mediated nanoformulations: a promising strategy for cancer immunotherapy

  • Review
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Engineering polymer-based nano-systems have attracted many researchers owing to their unique qualities like shape, size, porosity, mechanical strength, biocompatibility, and biodegradability. Both natural and synthetic polymers can be tuned to get desired surface chemistry and functionalization to improve the efficacy of cancer therapy by promoting targeted delivery to the tumor site. Recent advancements in cancer immunoediting have been able to manage both primary tumor and metastatic lesions via activation of the immune system. The combinations of nano-biotechnology and immunotherapeutic agents have provided positive outcomes by enhancing the host immune response in cancer therapy. The nanoparticles have been functionalized using antibodies, targeted antigens, small molecule ligands, and other novel agents that can interact with biological systems at nanoscale levels. Several polymers, such as polyethylene glycol (PEG), poly(lactic-co-glycolic acid) (PLGA), poly(ε-caprolactone) (PCL), and chitosan, have been approved by the Food and Drug Administration for clinical use in biomedicine. The polymeric nanoformulations such as polymers-antibody/antigen conjugates and polymeric drug conjugates are currently being explored as nanomedicines that can target cancer cells directly or target immune cells to promote anti-cancer immunotherapy. In this review, we focus on scientific developments and advancements on engineered polymeric nano-systems in conjugation with immunotherapeutic agents targeting the tumor microenvironment to improve their efficacy and the safety for better clinical outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated during the current study.

References

  • Acharya N, Sabatos-Peyton C, Anderson AC (2020) Tim-3 finds its place in the cancer immunotherapy landscape. e000911. https://doi.org/10.1136/jitc-2020-000911

  • Ahmad S, Zamry AA, Tan H-TT, Wong KK, Lim J, Mohamud R (2017) Targeting dendritic cells through gold nanoparticles: a review on the cellular uptake and subsequent immunological properties. 91:123–133. https://doi.org/10.1016/j.molimm.2017.09.001

  • Aikins ME, Xu C, Moon JJ (2020) Engineered nanoparticles for cancer vaccination and immunotherapy. 53:2094–2105. https://doi.org/10.1021/acs.accounts.0c00456

  • Antonia SJ, Villegas A, Daniel D, Vicente D, Murakami S, Hui R, Yokoi T, Chiappori A, Lee KH, de Wit M, Cho BC, Bourhaba M, Quantin X, Tokito T, Mekhail T, Planchard D, Kim Y-C, Karapetis CS, Hiret S, Özgüroğlu M (2017) Durvalumab after chemoradiotherapy in stage III non–small-cell lung cancer. 1919–1929. https://doi.org/10.1056/NEJMoa1709937

  • Ascierto PA, del Vecchio M, Robert C, Mackiewicz A, Chiarion-Sileni V, Arance A, Lebbé C, Bastholt L, Hamid O, Rutkowski P, McNeil C, Garbe C, Loquai C, Dreno B, Thomas L, Grob J-J, Liszkay G, Nyakas M, Gutzmer R, Maio M (2017) Ipilimumab 10 mg/kg versus ipilimumab 3 mg/kg in patients with unresectable or metastatic melanoma: a randomised, double-blind, multicentre, phase 3 trial. 611–622. https://doi.org/10.1016/S1470-2045(17)30231-0

  • Au KM, Park SI, Wang AZ (2020) Trispecific natural killer cell nanoengagers for targeted chemoimmunotherapy. https://doi.org/10.1126/sciadv.aba8564

  • Avramović N, Mandić B, Savić-Radojević A, Simić T (2020) Polymeric nanocarriers of drug delivery systems in cancer therapy. 298. https://doi.org/10.3390/pharmaceutics12040298

  • Azuma T, Yao S, Zhu G, Flies AS, Flies SJ, Chen L (2008) B7-H1 is a ubiquitous antiapoptotic receptor on cancer cells. 111:3635–3643. https://doi.org/10.1182/blood-2007-11-123141

  • Baron J, Wang ES (2018) Gemtuzumab ozogamicin for the treatment of acute myeloid leukemia. 11:549–559. https://doi.org/10.1080/17512433.2018.1478725

  • Bauleth‐Ramos T, Shahbazi M, Liu D, Fontana F, Correia A, Figueiredo P, Zhang H, Martins JP, Hirvonen JT, Granja P, Sarmento B, Santos HA (2017) Nutlin‐3a and cytokine co‐loaded spermine‐modified acetalated dextran nanoparticles for cancer chemo‐immunotherapy. 27:1703303. https://doi.org/10.1002/adfm.201703303

  • Beck A, Wurch T, Bailly C, Corvaia N (2010) Strategies and challenges for the next generation of therapeutic antibodies. 10:345–352. https://doi.org/10.1038/nri2747

  • Becker JC, Andersen MH, Schrama D, thor Straten P (2013) Immune-suppressive properties of the tumor microenvironment. 1137–1148. https://doi.org/10.1007/s00262-013-1434-6

  • Behl A, Sarwalia P, Kumar S, Behera C, Mintoo MJ, Datta TK, Gupta PN, Chhillar AK (2022) Codelivery of gemcitabine and MUC1 inhibitor using PEG-PCL nanoparticles for breast cancer therapy. 2429–2440. https://doi.org/10.1021/acs.molpharmaceut.2c00175

  • Behl A, Solanki S, Paswan SK, Datta TK, Saini AK, Saini RV, Parmar VS, Thakur VK, Malhotra S, Chhillar AK (2023) Biodegradable PEG-PCL nanoparticles for co-delivery of muc1 inhibitor and doxorubicin for the confinement of triple-negative breast cancer. 31:999–1018. https://doi.org/10.1007/s10924-022-02654-4

  • Behl A, Solanki S, Paswan SK, Datta TK, Saini AK, Saini RV, Parmar VS, Thakur VK, Malhotra S, Chhillar AK (2023) Biodegradable PEG-PCL nanoparticles for co-delivery of MUC1 inhibitor and doxorubicin for the confinement of triple-negative breast cancer. 999–1018. https://doi.org/10.1007/s10924-022-02654-4

  • Bencherif SA, Sands RW, Ali OA, Li WA, Lewin SA, Braschler TM, Shih T-Y, Verbeke CS, Bhatta D, Dranoff G, Mooney DJ (2015) Injectable cryogel-based whole-cell cancer vaccines. 6:7556. https://doi.org/10.1038/ncomms8556

  • Berraondo P, Sanmamed MF, Ochoa M C, Etxeberria I, Aznar MA, Pérez-Gracia JL, Rodríguez-Ruiz ME, Ponz-Sarvise M, Castañón E, Melero I (2019) Cytokines in clinical cancer immunotherapy. 120:6–15. https://doi.org/10.1038/s41416-018-0328-y

  • Blaauboer A, Sideras K, van Eijck CHJ, Hofland LJ (2021) Type I interferons in pancreatic cancer and development of new therapeutic approaches. 159:103204. https://doi.org/10.1016/j.critrevonc.2020.103204

  • Bolm L, Petruch N, Sivakumar S, Annels NE, Frampton AE (2022) Gene of the month: T-cell immunoreceptor with immunoglobulin and ITIM domains (TIGIT). 217–221. https://doi.org/10.1136/jclinpath-2021-207789

  • Burrell RA, McGranahan N, Bartek J, Swanton C (2013) The causes and consequences of genetic heterogeneity in cancer evolution. 501:338–345. https://doi.org/10.1038/nature12625

  • Chambers CA, Sullivan TJ, Allison JP (1997) Lymphoproliferation in CTLA-4–deficient mice is mediated by costimulation-dependent activation of CD4 + T cells. 885–895. https://doi.org/10.1016/S1074-7613(00)80406-9

  • Chau CH, Steeg PS, Figg WD (2019). Antibody–drug conjugates for cancer. 394:793–804. https://doi.org/10.1016/S0140-6736(19)31774-X

  • Chen Q, Xu L, Liang C, Wang C, Peng R, Liu Z (2016) Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. 7:13193. https://doi.org/10.1038/ncomms13193

  • Chen Q, Xu L, Liang C, Wang C, Peng R, Liu Z (2016) Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. 7:13193. https://doi.org/10.1038/ncomms13193

  • Chen Q, Chen J, Yang Z, Xu J, Xu L, Liang C, Han X, Liu Z (2019) Nanoparticle-enhanced radiotherapy to trigger robust cancer immunotherapy. 31:1802228. https://doi.org/10.1002/adma.201802228

  • Chiang C-S, Lin Y-J, Lee R, Lai Y-H, Cheng H-W, Hsieh C-H, Shyu W-C, Chen S-Y (2018) Combination of fucoidan-based magnetic nanoparticles and immunomodulators enhances tumour-localized immunotherapy. 746–754. https://doi.org/10.1038/s41565-018-0146-7

  • Chiocca EA, Rabkin SD (2014) Oncolytic viruses and their application to cancer immunotherapy. 2:295–300. https://doi.org/10.1158/2326-6066.CIR-14-0015

  • Conniot J, Scomparin A, Peres C, Yeini E, Pozzi S, Matos AI, Kleiner R, Moura LIF, Zupančič E, Viana AS, Doron H, Gois PM P, Erez N, Jung S, Satchi-Fainaro R, Florindo HF (2019) Immunization with mannosylated nanovaccines and inhibition of the immune-suppressing microenvironment sensitizes melanoma to immune checkpoint modulators. 14:891–901. https://doi.org/10.1038/s41565-019-0512-0

  • Croft M (2010) Control of immunity by the TNFR-related molecule OX40 (CD134). 28:57–78. https://doi.org/10.1146/annurev-immunol-030409-101243

  • Dai H, Fan Q, Wang C (2022) Recent applications of immunomodulatory biomaterials for disease immunotherapy. 20210157. https://doi.org/10.1002/EXP.20210157

  • Davis EJ, Martin-Liberal J, Kristeleit R, Cho DC, Blagden SP, Berthold D, Cardin DB, Vieito M, Miller RE, Hari Dass P, Orcurto A, Spencer K, Janik J E, Clark J, Condamine T, Pulini J, Chen X, Mehnert JM (2022) First-in-human phase I/II, open-label study of the anti-OX40 agonist INCAGN01949 in patients with advanced solid tumors. e004235. https://doi.org/10.1136/jitc-2021-004235

  • de Matteis V (2017). Exposure to inorganic nanoparticles: routes of entry, immune response, biodistribution and in vitro/in vivo toxicity evaluation. 29. https://doi.org/10.3390/toxics5040029

  • Debele TA, Yeh C-F, Su W-P (2020) Cancer immunotherapy and application of nanoparticles in cancers immunotherapy as the delivery of immunotherapeutic agents and as the immunomodulators. 3773. https://doi.org/10.3390/cancers12123773

  • di Giacomo AM, Ascierto PA, Queirolo P, Pilla L, Ridolfi R, Santinami M, Testori A, Simeone E, Guidoboni M, Maurichi A, Orgiano L, Spadola G, del Vecchio M, Danielli R, Calabrò L, Annesi D, Giannarelli D, Maccalli C, Fonsatti E, Maio M (2015) Three-year follow-up of advanced melanoma patients who received ipilimumab plus fotemustine in the Italian Network for Tumor Biotherapy (NIBIT)-M1 phase II study. 798–803. doi: https://doi.org/10.1093/annonc/mdu577

  • DiPaola RS, Chen Y-H, Bubley GJ, Stein MN, Hahn NM, Carducci MA, Lattime EC, Gulley JL, Arlen PM, Butterfield LH, Wilding G (2015) A national multicenter phase 2 study of prostate-specific antigen (PSA) Pox virus vaccine with sequential androgen ablation therapy in patients with PSA progression: ECOG 9802. 68:365–371. https://doi.org/10.1016/j.eururo.2014.12.010

  • Dobosz P, Dzieciątkowski, T (2019) The intriguing history of cancer immunotherapy. 10. doi: https://doi.org/10.3389/fimmu.2019.02965

  • Dong Y, Wong JSL, Sugimura R, Lam K-O, Li B, Kwok GGW, Leung R, Chiu JWY, Cheung TT, Yau T (2021) Recent advances and future prospects in immune checkpoint (ICI)-based combination therapy for advanced HCC. 1949. https://doi.org/10.3390/cancers13081949

  • Duhen R, Ballesteros-Merino C, Frye AK, Tran E, Rajamanickam V, Chang S-C, Koguchi Y, Bifulco CB, Bernard B, Leidner RS, Curti BD, Fox BA, Urba WJ, Bell RB, Weinberg AD (2021) Neoadjuvant anti-OX40 (MEDI6469) therapy in patients with head and neck squamous cell carcinoma activates and expands antigen-specific tumor-infiltrating T cells. 1047. https://doi.org/10.1038/s41467-021-21383-1

  • Dunn GP, Old LJ, Schreiber RD (2004). The three Es of cancer immunoediting. 329–360. https://doi.org/10.1146/annurev.immunol.22.012703.104803

  • Eggermont AMM, Chiarion-Sileni V, Grob J-J, Dummer R, Wolchok JD, Schmidt H, Hamid O, Robert C, Ascierto PA, Richards JM, Lebbé C, Ferraresi V, Smylie M, Weber JS, Maio M, Konto C, Hoos A, de Pril V, Gurunath RK, Testori A (2015) Adjuvant ipilimumab versus placebo after complete resection of high-risk stage III melanoma (EORTC 18071): a randomised, double-blind, phase 3 trial. 522–530. https://doi.org/10.1016/S1470-2045(15)70122-1

  • Finn OJ (2003) Cancer vaccines: between the idea and the reality. 3:630–641. https://doi.org/10.1038/nri1150

  • Francisco LM, Salinas VH, Brown KE, Vanguri VK, Freeman GJ, Kuchroo VK, Sharpe AH (2009) PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J Exp Med 206(13):3015–3029. https://doi.org/10.1084/jem.20090847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuentes-Antrás J, Genta S, Vijenthira A, Siu LL (2023) Antibody–drug conjugates: in search of partners of choice. https://doi.org/10.1016/j.trecan.2023.01.003

  • Galon J, Bruni D (2020) Tumor immunology and tumor evolution: intertwined histories. 52:55–81. https://doi.org/10.1016/j.immuni.2019.12.018

  • Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, Patnaik A, Aggarwal C, Gubens M, Horn L, Carcereny E, Ahn M-J, Felip E, Lee J-S, Hellmann MD, Hamid O, Goldman JW, Soria J-C, Dolled-Filhart M, Gandhi L (2015) Pembrolizumab for the treatment of non–small-cell lung cancer. 2018–2028. https://doi.org/10.1056/NEJMoa1501824

  • Ge Z, Peppelenbosch MP, Sprengers D, Kwekkeboom J (2021) TIGIT, the next step towards successful combination immune checkpoint therapy in cancer. 12. https://doi.org/10.3389/fimmu.2021.699895

  • Good-Jacobson KL, Szumilas CG, Chen L, Sharpe AH, Tomayko MM, Shlomchik MJ (2010) PD-1 regulates germinal center B cell survival and the formation and affinity of long-lived plasma cells. 11:535–542. https://doi.org/10.1038/ni.1877

  • Gouveia MG, Wesseler JP, Ramaekers J, Weder C, Scholten PBV, Bruns N (2023) Polymersome-based protein drug delivery – quo vadis?. 52:728–778. https://doi.org/10.1039/D2CS00106C

  • Hira I, Kumar A, Kumari R, Saini AK, Saini RV (2018) Pectin-guar gum-zinc oxide nanocomposite enhances human lymphocytes cytotoxicity towards lung and breast carcinomas. 90:494–503. https://doi.org/10.1016/j.msec.2018.04.085

  • Hira I, Kumari R, Saini AK, Gullilat H, Saini V, Sharma AK, Saini RV (2021) Apoptotic cell death induction through pectin, guar gum and zinc oxide nanocomposite in a549 lung adenocarcinomas. 12:1856–1869. https://doi.org/10.33263/BRIAC122.18561869

  • Hopewell EL, Cox C, Pilon-Thomas S, Kelley LL (2019) Tumor-infiltrating lymphocytes: streamlining a complex manufacturing process. 21:307–314. https://doi.org/10.1016/j.jcyt.2018.11.004

  • Hu Z, Ott P A, Wu C J (2018) Towards personalized, tumour-specific, therapeutic vaccines for cancer. 18:168–182. https://doi.org/10.1038/nri.2017.131

  • Hwang D, Ramsey JD, Kabanov AV (2020) Polymeric micelles for the delivery of poorly soluble drugs: from nanoformulation to clinical approval. 156:80–118. https://doi.org/10.1016/j.addr.2020.09.009

  • Jan N, Madni A, Rahim MA, Khan NU, Jamshaid T, Khan A, Jabar A, Khan S, Shah H (2021) In vitro anti-leukemic assessment and sustained release behaviour of cytarabine loaded biodegradable polymer based nanoparticles. 118971. https://doi.org/10.1016/j.lfs.2020.118971

  • Jan N, Madni A, Khan S, Shah H, Akram F, Khan A, Ertas D, Bostanudin MF, Contag CH, Ashammakhi N, Ertas YN (2023) Biomimetic cell membrane‐coated poly(lactic-co‐glycolic acid) nanoparticles for biomedical applications. https://doi.org/10.1002/btm2.10441

  • Johnston RJ, Comps-Agrar L, Hackney J, Yu X, Huseni M, Yang Y, Park S, Javinal V, Chiu H, Irving B, Eaton DL, Grogan JL (2014) The immunoreceptor TIGIT regulates antitumor and antiviral CD8 + T cell effector function. 26:923–937. https://doi.org/10.1016/j.ccell.2014.10.018

  • Joshi H, Kumar G, Tuli HS, Mittal S (2022) Inhibition of cancer cell metastasis by nanotherapeutics: current achievements and future trends, 1st edn. Jenny Stanford Publishing, New York

    Google Scholar 

  • Joshi H, Malik A, Aggarwal S, Munde M, Maitra SS, Adlakha N, Bhatnagar R (2019) In-vitro detection of phytopathogenic fungal cell wall by polyclonal sera raised against trimethyl chitosan nanoparticles. 14:10023–10033. https://doi.org/10.2147/IJN.S220488

  • Kakwere H, Ingham ES, Allen R, Mahakian LM, Tam SM, Zhang H, Silvestrini MT, Lewis JS, Ferrara KW (2017) Toward personalized peptide-based cancer nanovaccines: a facile and versatile synthetic approach. 28:2756–2771. https://doi.org/10.1021/acs.bioconjchem.7b00502

  • Karlsson J, Vaughan HJ, Green JJ (2018) Biodegradable polymeric nanoparticles for therapeutic cancer treatments. 9:105–127. https://doi.org/10.1146/annurev-chembioeng-060817-084055

  • Kaufman HL, Kohlhapp FJ, Zloza A (2015) Oncolytic viruses: a new class of immunotherapy drugs. 14:642–662. https://doi.org/10.1038/nrd4663

  • Kaufman HL, Russell J, Hamid O, Bhatia S, Terheyden P, D’Angelo SP, Shih KC, Lebbé C, Linette GP, Milella M, Brownell I, Lewis KD, Lorch JH, Chin K, Mahnke L, von Heydebreck A, Cuillerot J-M, Nghiem P (2016) Avelumab in patients with chemotherapy-refractory metastatic Merkel cell carcinoma: a multicentre, single-group, open-label, phase 2 trial. 1374–1385. https://doi.org/10.1016/S1470-2045(16)30364-3

  • Keller S, Wilson JT, Patilea GI, Kern HB, Convertine AJ, Stayton PS (2014) Neutral polymer micelle carriers with pH-responsive, endosome-releasing activity modulate antigen trafficking to enhance CD8+ T cell responses. 191:24–33. https://doi.org/10.1016/j.jconrel.2014.03.041

  • Keskin DB, Anandappa AJ, Sun J, Tirosh I, Mathewson ND, Li S, Oliveira G, Giobbie-Hurder A, Felt K, Gjini E, Shukla SA, Hu Z, Li L, Le PM, Allesøe RL, Richman AR, Kowalczyk MS, Abdelrahman S, Geduldig JE, Reardon DA (2019) Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. 565:234–239. https://doi.org/10.1038/s41586-018-0792-9

  • Khalaf K, Hana D, Chou JT-T, Singh C, Mackiewicz A, Kaczmarek M (2021) Aspects of the tumor microenvironment involved in immune resistance and drug resistance. 12. https://doi.org/10.3389/fimmu.2021.656364

  • Khongorzul P, Ling CJ, Khan FU, Ihsan AU, Zhang J (2020) Antibody–drug conjugates: a comprehensive review. 18:3–19. https://doi.org/10.1158/1541-7786.MCR-19-0582

  • Kim H, Niu L, Larson P, Kucaba TA, Murphy KA, James BR, Ferguson DM, Griffith TS, Panyam J (2018) Polymeric nanoparticles encapsulating novel TLR7/8 agonists as immunostimulatory adjuvants for enhanced cancer immunotherapy. 164:38–53. https://doi.org/10.1016/j.biomaterials.2018.02.034

  • Korangath P, Barnett JD, Sharma A, Henderson ET, Stewart J, Yu S-H, Kandala SK, Yang C-T, Caserto JS, Hedayati M, Armstrong TD, Jaffee E, Gruettner C, Zhou XC, Fu W, Hu C, Sukumar S, Simons BW, Ivkov R (2020) Nanoparticle interactions with immune cells dominate tumor retention and induce T cell–mediated tumor suppression in models of breast cancer. 6:13. https://doi.org/10.1126/sciadv.aay1601

  • Kourie HR, Klastersky J (2016) Immune checkpoint inhibitors side effects and management. 8:799–807. https://doi.org/10.2217/imt-2016-0029

  • Lamb YN (2017) Inotuzumab ozogamicin: first global approval. 77:1603–1610. https://doi.org/10.1007/s40265-017-0802-5

  • Le TMD, Yoon A-R, Thambi T, Yun C-O (2022) Polymeric systems for cancer immunotherapy: a review. 13. https://doi.org/10.3389/fimmu.2022.826876

  • Leach DR, Krummel MF, Allison JP (1996) Enhancement of antitumor immunity by CTLA-4 blockade. 1734–1736. https://doi.org/10.1126/science.271.5256.1734

  • Lee ES, Shin JM, Son S, Ko H, Um W, Song SH, Lee JA, Park JH (2019) Recent advances in polymeric nanomedicines for cancer immunotherapy. 8:1801320. https://doi.org/10.1002/adhm.201801320

  • Li S, Feng X, Wang J, He L, Wang C, Ding J, Chen X (2018) Polymer nanoparticles as adjuvants in cancer immunotherapy. 11:5769–5786. https://doi.org/10.1007/s12274-018-2124-7

  • Lian H, Ma S, Zhao D, Zhao W, Cui Y, Hua Y, Zhang Z (2022) Cytokine therapy combined with nanomaterials participates in cancer immunotherapy. 2606. https://doi.org/10.3390/pharmaceutics14122606

  • Liang J, Luo G, Chen W, Zhang X (2021) Recent advances in engineered materials for immunotherapy‐involved combination cancer therapy. 2007630. https://doi.org/10.1002/adma.202007630

  • Liang J, Luo G, Chen W, Zhang X (2021) Recent advances in engineered materials for immunotherapy‐involved combination cancer therapy. 33. https://doi.org/10.1002/adma.202007630

  • Liu L, Chen J (2023) Therapeutic antibodies for precise cancer immunotherapy: current and future perspectives. 2:555–569. https://doi.org/10.1515/mr-2022-0033

  • Liu Y, Qiao L, Zhang S, Wan G, Chen B, Zhou P, Zhang N, Wang Y (2018) Dual pH-responsive multifunctional nanoparticles for targeted treatment of breast cancer by combining immunotherapy and chemotherapy. 66:310–324. https://doi.org/10.1016/j.actbio.2017.11.010

  • Liu L, Wang Y, Guo X, Zhao J, Zhou S (2020) A biomimetic polymer magnetic nanocarrier polarizing tumor‐associated macrophages for potentiating immunotherapy. 16. https://doi.org/10.1002/smll.202003543

  • LoRusso PM, Weiss D, Guardino E, Girish S, Sliwkowski MX (2011) Trastuzumab emtansine: a unique antibody-drug conjugate in development for human epidermal growth factor receptor 2–positive cancer. 17:6437–6447. https://doi.org/10.1158/1078-0432.CCR-11-0762

  • Lu L, Xu X, Zhang B, Zhang R, Ji H, Wang X (2014) Combined PD-1 blockade and GITR triggering induce a potent antitumor immunity in murine cancer models and synergizes with chemotherapeutic drugs. 12:36. https://doi.org/10.1186/1479-5876-12-36

  • Lv M, Li S, Zhao H, Wang K, Chen Q, Guo Z, Liu Z, Xue W (2017) Redox-responsive hyperbranched poly (amido amine) and polymer dots as a vaccine delivery system for cancer immunotherapy. 5:9532–9545. https://doi.org/10.1039/C7TB02334K

  • Lv S, Sylvestre M, Prossnitz AN, Yang LF, Pun SH (2021) Design of polymeric carriers for intracellular peptide delivery in oncology applications. 121:11653–11698. https://doi.org/10.1021/acs.chemrev.0c00963

  • Ma Y, Zhao S, Shen S, Fang S, Ye Z, Shi Z, Hong A (2015) A novel recombinant slow-release TNF α-derived peptide effectively inhibits tumor growth and angiogensis. 5:13595. https://doi.org/10.1038/srep13595

  • Malonis RJ, Lai JR, Vergnolle O (2020) Peptide-based vaccines: current progress and future challenges. 120:3210–3229. https://doi.org/10.1021/acs.chemrev.9b00472

  • Migden MR, Rischin D, Schmults CD, Guminski A, Hauschild A, Lewis K D, Chung CH, Hernandez-Aya L, Lim AM, Chang A L S, Rabinowits G, Thai A A, Dunn LA, Hughes BGM, Khushalani NI, Modi B, Schadendorf D, Gao B, Seebach F, Fury MG (2018) PD-1 blockade with cemiplimab in advanced cutaneous squamous-cell carcinoma. 341–351. https://doi.org/10.1056/NEJMoa1805131

  • Mudgal J, Mudgal PP, Kinra M, Raval R (2019) Immunomodulatory role of chitosan‐based nanoparticles and oligosaccharides in cyclophosphamide‐treated mice. 89:e12749. https://doi.org/10.1111/sji.12749

  • Najafi M, Hashemi Goradel N, Farhood B, Salehi E, Nashtaei M S, Khanlarkhani N, Khezri Z, Majidpoor J, Abouzaripour M, Habibi M, Kashani IR, Mortezaee K (2019) Macrophage polarity in cancer: a review. 120:2756-2765. https://doi.org/10.1002/jcb.27646

  • Nguyen KG, Vrabel MR, Mantooth SM, Hopkins JJ, Wagner ES, Gabaldon TA, Zaharoff DA (2020) Localized interleukin-12 for cancer immunotherapy. 11. https://doi.org/10.3389/fimmu.2020.575597

  • Nicolò E, Giugliano F, Ascione L, Tarantino P, Corti C, Tolaney SM, Cristofanilli M, Curigliano G (2022) Combining antibody-drug conjugates with immunotherapy in solid tumors: current landscape and future perspectives. 106. https://doi.org/10.1016/j.ctrv.2022.102395

  • NIH, National Cancer Institute (2021) https://www.cancer.gov/about-cancer/understanding/what-is-cancer. Accessed on 13 Feb 2023

  • Palanca-Wessels MCA, Czuczman M, Salles G, Assouline S, Sehn LH, Flinn I, Patel MR, Sangha R, Hagenbeek A, Advani R, Tilly H, Casasnovas O, Press OW, Yalamanchili S, Kahn R, Dere RC, Lu D, Jones S, Jones C, Morschhauser F (2015) Safety and activity of the anti-CD79B antibody–drug conjugate polatuzumab vedotin in relapsed or refractory B-cell non-Hodgkin lymphoma and chronic lymphocytic leukaemia: a phase 1 study. 16:704–715. https://doi.org/10.1016/S1470-2045(15)70128-2

  • Pierini F, Nakielski P, Urbanek O, Pawłowska S, Lanzi M, de Sio L, Kowalewski T A (2018) Polymer-based nanomaterials for photothermal therapy: from light-responsive to multifunctional nanoplatforms for synergistically combined technologies. 19:4147–4167. https://doi.org/10.1021/acs.biomac.8b01138

  • Qiu F, Becker KW, Knight FC, Baljon JJ, Sevimli S, Shae D, Gilchuk P, Joyce S, Wilson JT (2018) Poly(propylacrylic acid)-peptide nanoplexes as a platform for enhancing the immunogenicity of neoantigen cancer vaccines. 182:82–91. https://doi.org/10.1016/j.biomaterials.2018.07.052

  • Qiu Y, Su M, Liu L, Tang Y, Pan Y, Sun J (2021) Clinical application of cytokines in cancer immunotherapy. 15:2269–2287. https://doi.org/10.2147/DDDT.S308578

  • Quandt D, Hoff H, Rudolph M, Fillatreau S, Brunner-Weinzierl MC (2007) A new role of CTLA-4 on B cells in thymus-dependent immune responses in vivO. 179:7316–7324. https://doi.org/10.4049/jimmunol.179.11.7316

  • Riley RS, June CH, Langer R, Mitchell MJ (2019). Delivery technologies for cancer immunotherapy. 18:175–196. https://doi.org/10.1038/s41573-018-0006-z

  • Rodriguez-Abreu D, Johnson ML, Hussein MA, Cobo M, Patel AJ, Secen NM, Lee KH, Massuti B, Hiret S, Yang JC-H, Barlesi F, Lee DH, Paz-Ares LG, Hsieh RW, Miller K, Patil N, Twomey P, Kapp A, Meng R, Cho BC (2020) Primary analysis of a randomized, double-blind, phase II study of the anti-TIGIT antibody tiragolumab (tira) plus atezolizumab (atezo) versus placebo plus atezo as first-line (1L) treatment in patients with PD-L1-selected NSCLC (CITYSCAPE). 9503–9503. https://doi.org/10.1200/JCO.2020.38.15_suppl.9503

  • Rosenberg JE, Hoffman-Censits J, Powles T, van der Heijden MS, Balar A, Necchi A, Dawson N, O’Donnell PH, Balmanoukian A, Loriot Y, Srinivas S, Retz MM, Grivas P, Joseph RW, Galsky MD, Fleming MT, Petrylak DP, Perez-Gracia JL, Burris HA, Dreicer R (2016) Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. 1909–1920. https://doi.org/10.1016/S0140-6736(16)00561-4

  • Sakuishi K, Apetoh L, Sullivan JM, Blazar BR, Kuchroo VK, Anderson AC (2010) Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. 207:2187–2194. https://doi.org/10.1084/jem.20100643

  • Seidel JA, Otsuka A, Kabashima K (2018) Anti-PD-1 and anti-CTLA-4 therapies in cancer: mechanisms of action, efficacy, and limitations.8. https://doi.org/10.3389/fonc.2018.00086

  • Senter PD, Sievers EL (2012) The discovery and development of brentuximab vedotin for use in relapsed Hodgkin lymphoma and systemic anaplastic large cell lymphoma. 30:631–637. https://doi.org/10.1038/nbt.2289

  • Shae D, Baljon JJ, Wehbe M, Becker KW, Sheehy TL, Wilson JT (2020) At the bench: engineering the next generation of cancer vaccines. 108:1435–1453. https://doi.org/10.1002/JLB.5BT0119-016R

  • Shah NJ, Najibi AJ, Shih T-Y, Mao AS, Sharda A, Scadden DT, Mooney DJ (2020) A biomaterial-based vaccine eliciting durable tumour-specific responses against acute myeloid leukaemia. 4:40–51. https://doi.org/10.1038/s41551-019-0503-3

  • Shalhout SZ, Miller DM, Emerick KS, Kaufman HL (2023) Therapy with oncolytic viruses: progress and challenges. 160–177. https://doi.org/10.1038/s41571-022-00719-w

  • Shankar B, Zhang J, Naqash AR, Forde PM, Feliciano JL, Marrone KA, Ettinger DS, Hann CL, Brahmer JR, Ricciuti B, Owen D, Toi Y, Walker P, Otterson GA, Patel SH, Sugawara S, Naidoo J (2020) Multisystem immune-related adverse events associated with immune checkpoint inhibitors for treatment of non–small cell lung cancer. 6:1952-1956 https://doi.org/10.1001/jamaoncol.2020.5012

  • Shao K, Singha S, Clemente-Casares X, Tsai S, Yang Y, Santamaria P (2015) Nanoparticle-based immunotherapy for cancer. 9:16–30. https://doi.org/10.1021/nn5062029

  • Shao K, Singha S, Clemente-Casares X, Tsai S, Yang Y, Santamaria P (2015) Nanoparticle-based immunotherapy for cancer. 16–30. https://doi.org/10.1021/nn5062029

  • Shao F, Zhang M, Xu L, Yin D, Li M, Jiang Q, Zhang Q, Yang Y (2020) Multiboosting of cancer immunotherapy by a core–shell delivery system. 17:338–348. https://doi.org/10.1021/acs.molpharmaceut.9b01113

  • Sheng K-C, Kalkanidis M, Pouniotis D S, Esparon S, Tang C K, Apostolopoulos V, Pietersz G A (2008) Delivery of antigen using a novel mannosylated dendrimer potentiates immunogenicityin vitro andin vivo. 38:424–436. https://doi.org/10.1002/eji.200737578

  • Shields CW, Wang LL, Evans MA, Mitragotri S (2020) Materials for immunotherapy. 32. https://doi.org/10.1002/adma.201901633

  • Shields CW, Wang LL, Evans MA, Mitragotri S (2020) Materials for immunotherapy. 1901633. https://doi.org/10.1002/adma.201901633

  • Shor B, Gerber H-P, Sapra P (2015) Preclinical and clinical development of inotuzumab-ozogamicin in hematological malignancies. 67:107–116. https://doi.org/10.1016/j.molimm.2014.09.014

  • Siegel RL, Miller KD, Wagle NS, Jemal A (2023) Cancer statistics, 2023. https://doi.org/10.3322/caac.21763

  • Sim GC, Radvanyi L (2014) The IL-2 cytokine family in cancer immunotherapy. 25:377–390. https://doi.org/10.1016/j.cytogfr.2014.07.018

  • Song W, Musetti SN, Huang L (2017) Nanomaterials for cancer immunotherapy. 148:16–30. https://doi.org/10.1016/j.biomaterials.2017.09.017

  • Stadtmauer EA, Fraietta JA, Davis MM, Cohen AD, Weber KL, Lancaster E, Mangan PA, Kulikovskaya I, Gupta M, Chen F, Tian L, Gonzalez VE, Xu J, Jung I, Melenhorst JJ, Plesa G, Shea J, Matlawski T, Cervini A, June CH (2020). CRISPR-engineered T cells in patients with refractory cancer. Science, 367(6481). https://doi.org/10.1126/science.aba7365

  • Su S, Zou Z, Chen F, Ding N, Du J, Shao J, Li L, Fu Y, Hu B, Yang Y, Sha H, Meng F, Wei J, Huang X, Liu B (2017) CRISPR-Cas9-mediated disruption of PD-1 on human T cells for adoptive cellular therapies of EBV positive gastric cancer. 6:e1249558. https://doi.org/10.1080/2162402X.2016.1249558

  • Summers J, Cohen MH, Keegan P, Pazdur R (2010) FDA drug approval summary: bevacizumab plus interferon for advanced renal cell carcinoma. 15:104–111. https://doi.org/10.1634/theoncologist.2009-0250

  • Tariq M, Zhang J, Liang G, Ding L, He Q, Yang B (2017) Macrophage polarization: anti-cancer strategies to target tumor-associated macrophage in breast cancer. 118:2484–2501. https://doi.org/10.1002/jcb.25895

  • Thangam R, Patel KD, Kang H, Paulmurugan R (2021) Advances in engineered polymer nanoparticle tracking platforms towards cancer immunotherapy—current status and future perspectives. 9:935. https://doi.org/10.3390/vaccines9080935

  • Tran KB, Lang JJ, Compton K, Xu R, Acheson AR, Henrikson HJ, Kocarnik JM, Penberthy L, Aali A, Abbas Q, Abbasi B, Abbasi-Kangevari M, Abbasi-Kangevari Z, Abbastabar H, Abdelmasseh M, Abd-Elsalam, S, Abdelwahab AA, Abdoli G, Abdulkadir HA, Murray CJL (2022) The global burden of cancer attributable to risk factors. 400:563–591. https://doi.org/10.1016/S0140-6736(22)01438-6

  • van der Burg SH, Arens R, Ossendorp F, van Hall T, Melief C JM (2016) Vaccines for established cancer: overcoming the challenges posed by immune evasion. 16:219–233. https://doi.org/10.1038/nrc.2016.16

  • Varn FS, Mullins DW, Arias-Pulido H, Fiering S, Cheng C (2017) Adaptive immunity programmes in breast cancer. 150:25–34. https://doi.org/10.1111/imm.12664

  • Vazquez-Lombardi R, Roome B, Christ D (2013) Molecular engineering of therapeutic cytokines. 2:426–451. https://doi.org/10.3390/antib2030426

  • Velcheti V, Schalper K (2016) Basic overview of current immunotherapy approaches in cancer. 36: 298–308. https://doi.org/10.1200/EDBK_156572

  • Verma S, Miles D, Gianni L, Krop IE, Welslau M, Baselga J, Pegram M, Oh D-Y, Diéras V, Guardino E, Fang L, Lu MW, Olsen S, Blackwell K (2012) Trastuzumab emtansine for HER2-positive advanced breast cancer. 367: 1783–1791. https://doi.org/10.1056/NEJMoa1209124

  • von Locquenghien M, Rozalén C, Celià-Terrassa T (2021) Interferons in cancer immunoediting: sculpting metastasis and immunotherapy response. 131. https://doi.org/10.1172/JCI143296

  • Weber JS, D’Angelo SP, Minor D, Hodi FS, Gutzmer R, Neyns B, Hoeller C, Khushalani NI, Miller WH, Lao CD, Linette GP, Thomas L, Lorigan P, Grossmann KF, Hassel JC, Maio M, Sznol M, Ascierto PA, Mohr P, Larkin J (2015) Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. 375–384. https://doi.org/10.1016/S1470-2045(15)70076-8

  • Weber R, Groth C, Lasser S, Arkhypov I, Petrova V, Altevogt P, Utikal J, Umansky V (2021) IL-6 as a major regulator of MDSC activity and possible target for cancer immunotherapy. 359:104254. https://doi.org/10.1016/j.cellimm.2020.104254

  • Wiles KN, Tsikretsis LE, Alioto CM, Hermida de Viveiros PA, Villaflor VM, Tétreault M-P (2022) GITR agonistic stimulation enhances the anti-tumor immune response in a mouse model of ESCC. 908–918. https://doi.org/10.1093/carcin/bgac064

  • Wu Y, Gu W, Li L, Chen C, Xu Z (2019) Enhancing PD-1 gene silence in T lymphocytes by comparing the delivery performance of two inorganic nanoparticle platforms. 9:159. https://doi.org/10.3390/nano9020159

  • Yang Y, Lundqvist A (2020) Immunomodulatory effects of IL-2 and IL-15; implications for cancer immunotherapy. 12:3586. https://doi.org/10.3390/cancers12123586

  • Yoon HY, Selvan ST, Yang Y, Kim MJ, Yi DK, Kwon IC, Kim K (2018) Engineering nanoparticle strategies for effective cancer immunotherapy. 178:597–607. https://doi.org/10.1016/j.biomaterials.2018.03.036

  • Yoshizaki Y, Yuba E, Sakaguchi N, Koiwai K, Harada A, Kono K (2015) Effect of molecular adjuvant inclusion in pH-sensitive polymer-modified liposomes on their performance as antigen delivery carriers for cancer immunotherapy, 213. https://doi.org/10.1016/j.jconrel.2015.05.242

  • Younes A, Bartlett NL, Leonard JP, Kennedy DA, Lynch CM, Sievers EL, Forero-Torres A (2010) Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas. 363:1812–1821. https://doi.org/10.1056/NEJMoa1002965

  • Yu M, Yang W, Yue W, Chen Y (2022) Targeted cancer immunotherapy: nanoformulation engineering and clinical translation. 2204335. https://doi.org/10.1002/advs.202204335

  • Yu Z, Shen X, Yu H, Tu H, Chittasupho C, Zhao Y (2023) Smart polymeric nanoparticles in cancer immunotherapy. 775. https://doi.org/10.3390/pharmaceutics15030775

  • Zamarron BF, Chen W (2011) Dual roles of immune cells and their factors in cancer development and progression. 651–658. https://doi.org/10.7150/ijbs.7.651

  • Zamboni WC, Torchilin V, Patri AK, Hrkach J, Stern S, Lee R, Nel A, Panaro NJ, Grodzinski P (2012) Best practices in cancer nanotechnology: perspective from NCI nanotechnology alliance. 3229–3241. https://doi.org/10.1158/1078-0432.CCR-11-2938

  • Zheng C, Wang Q, Wang Y, Zhao X, Gao K, Liu Q, Zhao Y, Zhang Z, Zheng Y, Cao J, Chen H, Shi L, Kang C, Liu Y, Lu Y (2019) In situ modification of the tumor cell surface with immunomodulating nanoparticles for effective suppression of tumor growth in mice. 1902542. https://doi.org/10.1002/adma.201902542

  • Zhou L, Hou B, Wang D, Sun F, Song R, Shao Q, Wang H, Yu H, Li Y (2020) Engineering polymeric prodrug nanoplatform for vaccination immunotherapy of cancer. 20:4393–4402. https://doi.org/10.1021/acs.nanolett.0c01140

Download references

Acknowledgements

The authors would like to thank Maharishi Markandeshwar (Deemed to be University) for providing financial support and facilities.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, SK and RVS. Methodology, SK and RVS. Formal analysis, AKS and HST. Data curation, AKS and AKC. Writing—original draft preparation, SK, NG, HJ, MV, and JK. Writing—review and editing, RVS and AKS. Supervision, RVS and HST. All authors have read and agreed to the published version of the manuscript. The authors confirm that no paper mill and artificial intelligence was used.

Corresponding author

Correspondence to Reena V. Saini.

Ethics declarations

Ethics approval

Not applicable

Consent to participate

Not applicable

Consent for publication

All authors have their consent to publish.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, S., Saini, A.K., Tuli, H.S. et al. Polymer-mediated nanoformulations: a promising strategy for cancer immunotherapy. Naunyn-Schmiedeberg's Arch Pharmacol 397, 1311–1326 (2024). https://doi.org/10.1007/s00210-023-02699-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-023-02699-9

Keywords

Navigation