Skip to main content

Advertisement

Log in

Therapeutic approaches for cholestatic liver diseases: the role of nitric oxide pathway

  • Review
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Cholestasis describes bile secretion or flow impairment, which is clinically manifested with fatigue, pruritus, and jaundice. Neutrophils play a crucial role in many diseases such as cholestasis liver diseases through mediating several oxidative and inflammatory pathways. Data have been collected from clinical, in vitro, and in vivo studies published between 2000 and December 2021 in English and obtained from the PubMed, Google Scholar, Scopus, and Cochrane libraries. Although nitric oxide plays an important role in the pathogenesis of cholestatic liver diseases, excessive levels of NO in serum and affected tissues, mainly synthesized by the inducible nitric oxide synthase (iNOS) enzyme, can exacerbate inflammation. NO induces the inflammatory and oxidative processes, which finally leads to cell damage. We found that natural products such as baicalin, curcumin, resveratrol, and lycopene, as well as chemical likes ursodeoxycholic acid, dexamethasone, rosuvastatin, melatonin, and sildenafil, are able to markedly attenuate the NO production and iNOS expression, mainly through inducing the nuclear factor κB (NF-κB), Janus kinase and signal transducer and activator of transcription (JAK/STAT), and toll like receptor-4 (TLR4) signaling pathways. This study summarizes the latest scientific data about the bile acid signaling pathway, the neutrophil chemotaxis recruitment process during cholestasis, and the role of NO in cholestasis liver diseases. Literature review directed us to propose that suppression of NO and its related pathways could be a therapeutic option for preventing or treating cholestatic liver diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  • Ai G, Liu Q, Hua W, Huang Z, Wang D (2013) Hepatoprotective evaluation of the total flavonoids extracted from flowers of Abelmoschus manihot (L.) Medic: in vitro and in vivo studies. J Ethnopharmacol 146:794–802

    CAS  PubMed  Google Scholar 

  • Aksu B, Umit H, Kanter M, Guzel A, Inan M, Civelek S, Aktas C, Uzun H (2009) Effects of sphingosylphosphorylcholine against cholestatic oxidative stress and liver damage in the common bile duct ligated rats. J Pediatr Surg 44:702–710

    PubMed  Google Scholar 

  • Ali FEM, Azouz AA, Bakr AG, Abo-Youssef AM, Hemeida RAM (2018) Hepatoprotective effects of diosmin and/or sildenafil against cholestatic liver cirrhosis: the role of Keap-1/Nrf-2 and P38-MAPK/NF-κB/iNOS signaling pathway. Food Chem Toxicol 120:294–304

    CAS  PubMed  Google Scholar 

  • Amirtharaj GJ, Natarajan SK, Anna Pulimood KA, Balasubramanian AV, Ramachandran A (2017) Role of oxygen free radicals, nitric oxide and mitochondria in mediating cardiac alterations during liver cirrhosis induced by thioacetamide. Cardiovasc Toxicol 17:175–184

    CAS  PubMed  Google Scholar 

  • Ara C, Kirimlioglu H, Karabulut AB, Coban S, Ay S, Harputluoglu M, Kirimlioglu V, Yilmaz S (2005) Protective effect of resveratrol against oxidative stress in cholestasis. J Surg Res 127:112–117

    CAS  PubMed  Google Scholar 

  • Asai A, Miethke A, Bezerra JA (2015) Pathogenesis of biliary atresia: defining biology to understand clinical phenotypes. Nat Rev Gastroenterol Hepatol 12:342–352

    PubMed  PubMed Central  Google Scholar 

  • Awad AS, Kamel R (2010) Effect of rosuvastatin on cholestasis-induced hepatic injury in rat livers. J Biochem Mol Toxicol 24:89–94

    CAS  Google Scholar 

  • Bae HK, Lee H, Kim KC, Hong YM (2016) The effect of sildenafil on right ventricular remodeling in a rat model of monocrotaline-induced right ventricular failure. Korean J Pediatr 59:262

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barta A, Janega P, Babál P, Murár E, Cebová M, Pechánová O (2015) The effect of curcumin on liver fibrosis in the rat model of microsurgical cholestasis. Food Funct 6:2187–2193

    CAS  PubMed  Google Scholar 

  • Bian Ka, Murad F (2003) Nitric oxide (NO)-biogeneration, regulation, and relevance to human diseases. Front Biosci 8:264–278

    Google Scholar 

  • Bull LN, Thompson RJ (2018) Progressive familial intrahepatic cholestasis. Clin Liver Dis 22:657–669

    PubMed  Google Scholar 

  • Castellani C, Assael BM (2017) Cystic fibrosis: a clinical view. Cell Mol Life Sci 74:129–140

    CAS  PubMed  Google Scholar 

  • Chen G, Ni Y, Nagata N, Zhuge F, Liang Xu, Nagashimada M, Yamamoto S, Ushida Y, Fuke N, Suganuma H (2019) Lycopene alleviates obesity-induced inflammation and insulin resistance by regulating M1/M2 status of macrophages. Mol Nutr Food Res 63:1900602

    CAS  Google Scholar 

  • Colares JR, Schemitt EG, Hartmann RM, Licks F, do Couto Soares M, Dal Bosco A, Marroni NP (2016) Antioxidant and anti-inflammatory action of melatonin in an experimental model of secondary biliary cirrhosis induced by bile duct ligation. World J Gastroenterol 22:8918

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crespo G, Mariño Z, Navasa M, Forns X (2012) Viral hepatitis in liver transplantation. Gastroenterology 142(1373–83):e1

    Google Scholar 

  • De Boeck K, Amaral MD (2016) Progress in therapies for cystic fibrosis. Lancet Respir Med 4:662–74

    PubMed  Google Scholar 

  • Der Woerd V, Wendy L, Houwen RHJ, van de Graaf SFJ (2017) Current and future therapies for inherited cholestatic liver diseases. World J Gastroenterol 23:763

    PubMed  PubMed Central  Google Scholar 

  • Ding Y, Zhao L, Mei H, Zhang S-L, Huang Z-H, Duan Y-Y, Ye P (2008) Exploration of emodin to treat alpha-naphthylisothiocyanate-induced cholestatic hepatitis via anti-inflammatory pathway. Eur J Pharmacol 590:377–386

    CAS  PubMed  Google Scholar 

  • Doumas M, Imprialos K, Dimakopoulou A, Stavropoulos K, Binas A, Athyros VG (2018) The role of statins in the management of nonalcoholic fatty liver disease. Curr Pharm Des 24:4587–4592

    CAS  PubMed  Google Scholar 

  • Duvigneau JC, Luis A, Gorman AM, Samali A, Kaltenecker D, Moriggl R, Kozlov AV (2019) Crosstalk between inflammatory mediators and endoplasmic reticulum stress in liver diseases. Cytokine 124:154577

    CAS  PubMed  Google Scholar 

  • Dyson JK, Beuers U, Jones DEJ, Lohse AW, Hudson M (2018) Primary sclerosing cholangitis. Lancet 391:2547–2559

    PubMed  Google Scholar 

  • Ezhilarasan D (2018) Oxidative stress is bane in chronic liver diseases: clinical and experimental perspective. Arab J Gastroenterol 19:56–64

    PubMed  Google Scholar 

  • Farzaei MH, Zobeiri M, Parvizi F, El-Senduny FF, Marmouzi I, Coy-Barrera E, Naseri R, Nabavi SM, Rahimi R, Abdollahi M (2018) Curcumin in liver diseases: a systematic review of the cellular mechanisms of oxidative stress and clinical perspective. Nutrients 10:855

    PubMed  PubMed Central  Google Scholar 

  • Fernández-Martínez E, Jiménez-Santana M, Centeno-Álvarez M, Torres-Valencia JM, Shibayama M, Cariño-Cortés R (2017) Hepatoprotective effects of nonpolar extracts from inflorescences of thistles Cirsium vulgare and Cirsium ehrenbergii on acute liver damage in rat. Pharmacogn Mag 13:S860

    Google Scholar 

  • Galiniak S, Aebisher D, Bartusik-Aebisher D (2019) Health benefits of resveratrol administration. Acta Biochim Pol 66:13–21

    CAS  PubMed  Google Scholar 

  • Galoosian A, Hanlon C, Zhang J, Holt EW, Yimam KK (2020) Clinical updates in primary biliary cholangitis: trends, epidemiology, diagnostics, and new therapeutic approaches. J Clin Transl Hepatol 8:49

    PubMed  PubMed Central  Google Scholar 

  • Gossard AA, Talwalkar JA (2014) Cholestatic liver disease. Medical Clinics 98:73–85

    PubMed  Google Scholar 

  • Grossi M, Phanstiel O, Rippe C, Swärd K, Alajbegovic A, Albinsson S, Forte A, Persson Lo, Hellstrand P, Nilsson B-O (2016) Inhibition of polyamine uptake potentiates the anti-proliferative effect of polyamine synthesis inhibition and preserves the contractile phenotype of vascular smooth muscle cells. J Cell Physiol 231:1334–1342

    CAS  PubMed  Google Scholar 

  • Gunaydin M, Cil ATB (2018) Progressive familial intrahepatic cholestasis: diagnosis, management, and treatment. Hepatic Med Evid Res 10:95

    Google Scholar 

  • Guo L-T, Wang S-Q, Jing Su, Li-Xing Xu, Ji Z-Y, Zhang R-Y, Zhao Q-W, Ma Z-Q, Deng X-Y, Ma S-P (2019) Baicalin ameliorates neuroinflammation-induced depressive-like behavior through inhibition of toll-like receptor 4 expression via the PI3K/AKT/FoxO1 pathway. J Neuroinflammation 16:1–21

    Google Scholar 

  • Hasegawa S, Yoneda M, Kurita Y, Nogami A, Honda Y, Hosono K, Nakajima A (2021) Cholestatic liver disease: current treatment strategies and new therapeutic agents. Drugs 81:1181–1192

    CAS  PubMed  PubMed Central  Google Scholar 

  • He L, Guo C, Peng C, Li Y (2021) Advances of natural activators for Nrf2 signaling pathway on cholestatic liver injury protection: a review. Eur J Pharmacol 174447

  • Hirschfield GM, Heathcote EJ, Gershwin ME (2010) Pathogenesis of cholestatic liver disease and therapeutic approaches. Gastroenterology 139:1481–96

    CAS  PubMed  Google Scholar 

  • Hu C, Zhao L, Tao J, Li L (2019) Protective role of melatonin in early-stage and end-stage liver cirrhosis. J Cell Mol Med 23:7151–7162

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu N, Liu J, Xue X, Li Y (2020) The effect of emodin on liver disease–comprehensive advances in molecular mechanisms. Eur J Pharmacol 882:173269

    CAS  PubMed  Google Scholar 

  • Huang F (2021) Ursodeoxycholic acid as a potential alternative therapeutic approach for neurodegenerative disorders: effects on cell apoptosis, oxidative stress and inflammation in the brain. Brain Behav Immun-Health 100348

  • Hussein MA (2013) Prophylactic effect of resveratrol against ethinylestradiol-induced liver cholestasis. J Med Food 16:246–254

    CAS  PubMed  Google Scholar 

  • Iwakiri Y, Kim MY (2015) Nitric oxide in liver diseases. Trends Pharmacol Sci 36:524–536

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jansen PLM, Ghallab A, Vartak N, Reif R, Schaap FG, Hampe J, Hengstler JG (2017) The ascending pathophysiology of cholestatic liver disease. Hepatology 65:722–738

    CAS  PubMed  Google Scholar 

  • Jin F, Cheng Du, Tao J-Y, Zhang S-L, Pang R, Guo Y-J, Ye P, Dong J-H, Zhao L (2013) Anti-inflammatory and anti-oxidative effects of corilagin in a rat model of acute cholestasis. BMC Gastroenterol 13:1–10

    Google Scholar 

  • Karaman A, Iraz M, Kirimlioglu H, Karadag N, Tas E, Fadillioglu E (2006) Hepatic damage in biliary-obstructed rats is ameliorated by leflunomide treatment. Pediatr Surg Int 22:701

    PubMed  Google Scholar 

  • Karaman A, Kirimlioglu H, Tas E, Karadag N, Gülsul C, Fadillioglu E, Demircan M (2010) Effect of leflunomide on liver regeneration after partial hepatectomy in rats. Pediatr Surg Int 26:219–226

    PubMed  Google Scholar 

  • Kim YP, Lee EB, Kim SY, Li D, Ban HS, Lim SS, Shin KH, Ohuchi K (2001) Inhibition of prostaglandin E2 production by platycodin D isolated from the root of Platycodon grandiflorum. Planta Med 67:362–364

    CAS  PubMed  Google Scholar 

  • Kim T-W, Lee H-K, Song I-B, Kim M-S, Hwang Y-H, Lim J-H, Park S-J, Lee S-W, Kim J-W, Yun H-I (2012) Protective effect of the aqueous extract from the root of Platycodon grandiflorum on cholestasis-induced hepatic injury in mice. Pharm Biol 50:1473–1478

    PubMed  Google Scholar 

  • Kim T-W, Lee H-K, Song I-B, Lim J-H, Cho E-S, Son H-Y, Jung J-Y, Yun H-I (2013) Platycodin D attenuates bile duct ligation-induced hepatic injury and fibrosis in mice. Food Chem Toxicol 51:364–369

    CAS  PubMed  Google Scholar 

  • Kohut TJ, Gilbert MA, Loomes KM (2021) Alagille syndrome: a focused review on clinical features, genetics, and treatment. In Seminars in liver disease. Thieme Medical Publishers, Inc.

  • Kosters A, Karpen SJ (2010) The role of inflammation in cholestasis: clinical and basic aspects. In Seminars in liver disease, 186–94. © Thieme Medical Publishers

  • Kozyra M, Glowniak K (2013) Phenolic acids in extracts obtained from the flowering herbs of Cirsium vulgare (Savi) Ten. growing in Poland. Acta Societatis Botanicorum Poloniae 82

  • Labib PL, Goodchild G, Pereira SP (2019) Molecular pathogenesis of cholangiocarcinoma. BMC Cancer 19:1–16

    Google Scholar 

  • Lakshminarayanan B, Davenport M (2016) Biliary atresia: a comprehensive review. J Autoimmun 73:1–9

    PubMed  Google Scholar 

  • Lashgari N-A, Momeni Roudsari N, Momtaz S, Ghanaatian N, Kohansal P, Hosein Farzaei M, Afshari K, Sahebkar A, Abdolghaffari AH (2020) Targeting mammalian target of rapamycin: prospects for the treatment of inflammatory bowel diseases. Curr Med Chem

  • Li T-H, Lee P-C, Lee K-C, Hsieh Y-C, Tsai C-Y, Yang Y-Y, Huang S-F, Tsai T-H, Hsieh S-L, Hou M-C (2016b) Down-regulation of common NFκB-iNOS pathway by chronic thalidomide treatment improves hepatopulmonary syndrome and muscle wasting in rats with biliary cirrhosis. Sci Rep 6:1–14

    Google Scholar 

  • Li W, Jiang L, Xianzhou Lu, Liu X, Ling M (2021) Curcumin protects radiation-induced liver damage in rats through the NF-κB signaling pathway. BMC Complement Med Ther 21:1–10

    Google Scholar 

  • Li S, Hong M, Tan H-Y, Wang N, Feng Y (2016a) Insights into the role and interdependence of oxidative stress and inflammation in liver diseases. Oxidative Med Cell Longev 2016a

  • Lim JH, Kim TW, Song IB, Park SJ, Kim MS, Cho ES, Jung JY, Son HY, Kim JW, Yun HI (2013) Protective effect of the roots extract of Platycodon grandiflorum on bile duct ligation-induced hepatic fibrosis in rats. Hum Exp Toxicol 32:1197–1205

    PubMed  Google Scholar 

  • Liu J, Peng L, Yang J, Wang M, Shengnan Xu, Liu J, Han P, He J, Tian D, Zhou Qi (2015) Sodium ferulate reduces portal pressure through inhibition of RhoA/Rho-kinase and activation of endothelial nitric oxide synthase in cirrhotic rats. Dig Dis Sci 60:2019–2029

    CAS  PubMed  Google Scholar 

  • Lohse AW, Chazouilleres O, Dalekos G, Drenth J, Heneghan M, Hofer H, Lammert F, Lenzi M (2015) EASL clinical practice guidelines: autoimmune hepatitis. J Hepatol 63:971–1004

    Google Scholar 

  • Lv P, Luo H-S, Zhou X-P, Paul SC, Xiao Y-J, Si X-M, Liu S-Q (2006) Thalidomide prevents rat liver cirrhosis via inhibition of oxidative stress. Pathol-Res Pract 202:777–788

    CAS  PubMed  Google Scholar 

  • Lv P, Li H-Y, Ji S-S, Li W, Fan L-J (2014) Thalidomide alleviates acute pancreatitis-associated lung injury via down-regulation of NFκB induced TNF-α. Pathol-Res Pract 210:558–564

    CAS  PubMed  Google Scholar 

  • Lv H, Hong L, Tian Ye, Yin C, Zhu C, Feng H (2019) Corilagin alleviates acetaminophen-induced hepatotoxicity via enhancing the AMPK/GSK3β-Nrf2 signaling pathway. Cell Commun Signal 17:1–15

    Google Scholar 

  • Ma X, Jiang Y, Zhang W, Wang J, Wang R, Wang L, Wei S, Wen J, Li H, Zhao Y (2020) Natural products for the prevention and treatment of cholestasis: a review. Phytother Res 34:1291–1309

    PubMed  Google Scholar 

  • Ma K, Tang D, Yu C, Zhao L (2021) Progress in research on the roles of TGR5 receptor in liver diseases. Scand J Gastroenterol 1–10

  • Manns MP, Lohse AW, Vergani D (2015) Autoimmune hepatitis–update 2015. J Hepatol 62:S100–S111

    PubMed  Google Scholar 

  • Mawardi M, Alalwan A, Fallatah H, Abaalkhail F, Hasosah M, Shagrani M, Alghamdi MY, Alghamdi AS (2021) Cholestatic liver disease: practice guidelines from the Saudi Association for the Study of Liver diseases and Transplantation. Saudi J Gastroenterol 27:S1

    PubMed Central  Google Scholar 

  • Mazzetti M, Marconi G, Mancinelli M, Benedetti A, Marzioni M, Maroni L (2021) The management of cholestatic liver diseases: current therapies and emerging new possibilities. J Clin Med 10:1763

    CAS  PubMed  PubMed Central  Google Scholar 

  • Michielsen PP, Francque SM, van Dongen JL (2005) Viral hepatitis and hepatocellular carcinoma. World J Surg Oncol 3:1–18

    Google Scholar 

  • Mieli-Vergani G, Vergani D, Czaja AJ, Manns MP, Krawitt EL, Vierling JM, Lohse AW, Montano-Loza AJ (2018) Autoimmune hepatitis. Nat Rev Dis Primers 4:1–21

    Google Scholar 

  • Mitchell E, Gilbert M, Loomes KM (2018) Alagille syndrome. Clin Liver Dis 22:625–641

    PubMed  Google Scholar 

  • Mladenović B, Mladenović N, Brzački V, Petrović N, Kamenov A, Golubović M, Ničković V, Stojanović NM, Sokolović DT (2018) Exogenous putrescine affects polyamine and arginine metabolism in rat liver following bile ductus ligation. Can J Physiol Pharmacol 96:1232–1237

    PubMed  Google Scholar 

  • Murch O, Abdelrahman M, Collino M, Gallicchio M, Benetti E, Mazzon E, Fantozzi R, Cuzzocrea S, Thiemermann C (2008) Sphingosylphosphorylcholine reduces the organ injury/dysfunction and inflammation caused by endotoxemia in the rat. Crit Care Med 36:550–559

    CAS  PubMed  Google Scholar 

  • Oleshchuk O, Ivankiv Y, Falfushynska H, Mudra A, Lisnychuk N (2019) Hepatoprotective effect of melatonin in toxic liver injury in rats. Medicina 55:304

    PubMed  PubMed Central  Google Scholar 

  • Olteanu D, Filip A, Mureşan A, Nagy A, Tabaran F, Moldovan R, Decea N, Catoi C, Clichici S (2012) The effects of chitosan and low dose dexamethasone on extrahepatic cholestasis after bile duct ligation in Wistar rats. Acta Physiol Hung 99:61–73

    CAS  PubMed  Google Scholar 

  • Osna NA, Donohue Jr TM, Kharbanda KK (2017) Alcoholic liver disease: pathogenesis and current management. Alcohol Res Curr Rev 38:147

    Google Scholar 

  • Pinto C, Giordano DM, Maroni L, Marzioni M (2018) Role of inflammation and proinflammatory cytokines in cholangiocyte pathophysiology. Biochim Biophys Acta Mol Basis Dis 1864:1270–78

    CAS  PubMed  Google Scholar 

  • Rabiee A, Silveira MG (2021) Primary sclerosing cholangitis. Transl Gastroenterol Hepatol 6

  • Rafeeq MM, Murad HAS (2017) Cystic fibrosis: current therapeutic targets and future approaches. J Transl Med 15:1–9

    Google Scholar 

  • Razori MV, Maidagan PM, Ciriaci N, Andermatten RB, Barosso IR, Martín PL, Basiglio CL, Sánchez Pozzi EJ, Ruiz ML, Roma MG (2019) Anticholestatic mechanisms of ursodeoxycholic acid in lipopolysaccharide-induced cholestasis. Biochem Pharmacol 168:48–56

    CAS  PubMed  Google Scholar 

  • Roesch EA, Nichols DP, Chmiel JF (2018) Inflammation in cystic fibrosis: an update. Pediatr Pulmonol 53:S30–S50

    PubMed  Google Scholar 

  • Rolla G, Brussino L, Scappaticci E, Morello M, Innarella R, Rosina F, Bucca C (2004) Source of exhaled nitric oxide in primary biliary cirrhosis. Chest 126:1546–1551

    CAS  PubMed  Google Scholar 

  • Roudsari NM, Lashgari N-A, Zandi N, Pazoki B, Momtaz S, Sahebkar A, Abdolghaffari AH (2020) PPARγ: a turning point for irritable bowel syndrome treatment. Life Sci 118103

  • Rutherford AE, Pratt DS (2006) Cholestasis and cholestatic syndromes. Curr Opin Gastroenterol 22:209–214

    PubMed  Google Scholar 

  • Saleh H, El-Shorbagy HM (2020) ’Chitosan protects liver against ischemia-reperfusion injury via regulating Bcl-2/Bax, TNF-α and TGF-β Expression. Int J Biol Macromol 164:1565–1574

    CAS  PubMed  Google Scholar 

  • Samant H, Manatsathit W, Dies D, Shokouh-Amiri H, Zibari G, Boktor M, Alexander JS (2019) Cholestatic liver diseases: an era of emerging therapies. World J Clin Cases 7:1571

    PubMed  PubMed Central  Google Scholar 

  • Shafaroodi H, Ebrahimi F, Moezi L, Hashemi M, Doostar Y, Ghasemi M, Dehpour AR (2010) Cholestasis induces apoptosis in mice cardiac cells: the possible role of nitric oxide and oxidative stress. Liver Int 30:898–905

    CAS  PubMed  Google Scholar 

  • Shen K, Feng X, Pan H, Zhang F, Xie H, Zheng S (2017) Baicalin ameliorates experimental liver cholestasis in mice by modulation of oxidative stress, inflammation, and NRF2 transcription factor. Oxidative Med Cell Longev 2017

  • Spinner NB, Gilbert MA, Loomes KM, Krantz ID (2019) Alagille syndrome. GeneReviews®[Internet]

  • Spirlì C, Okolicsanyi L, Strazzabosco M (2020) Effects of cytokines and nitric oxide on bicarbonate secretion by cholangiocytes. in, The pathophysiology of biliary epithelia (CRC Press)

  • Stättermayer AF, Halilbasic E, Wrba F, Ferenci P, Trauner M (2020) Variants in ABCB4 (MDR3) across the spectrum of cholestatic liver diseases in adults. J Hepatol 73:651–663

    PubMed  Google Scholar 

  • Staud R (2011) Effectiveness of CAM therapy: understanding the evidence. Rheum Dis Clin 37:9–17

    Google Scholar 

  • Su T-H, Kao J-H, Liu C-J (2014) Molecular mechanism and treatment of viral hepatitis-related liver fibrosis. Int J Mol Sci 15:10578–10604

    PubMed  PubMed Central  Google Scholar 

  • Taghizadieh M, Hajipour B, Asl NA, Khodadadi A, Somi MH, Banei M (2016) Combination effect of melatonin and dexamethasone on liver ischemia/reperfusion injury. Bratisl Lek Listy 117:47–53

    CAS  PubMed  Google Scholar 

  • Thuy V, Thi T, Thuy LTT, Yoshizato K, Kawada N (2017) Possible involvement of nitric oxide in enhanced liver injury and fibrogenesis during cholestasis in cytoglobin-deficient mice. Sci Rep 7:1–14

    Google Scholar 

  • Tokaç M, Taner G, Aydın S, Özkardeş AB, Dündar HZ, Taşlıpınar MY, Arıkök AT, Kılıç M, Başaran AA, Basaran N (2013) Protective effects of curcumin against oxidative stress parameters and DNA damage in the livers and kidneys of rats with biliary obstruction. Food Chem Toxicol 61:28–35

    PubMed  Google Scholar 

  • Tokac M, Aydin S, Taner G, Özkardeş AB, Taşlipinar MY, Doğan M, Dündar HZ, Kilic M, Başaran AA, Başaran AN (2015) Hepatoprotective and antioxidant effects of lycopene in acute cholestasis. Turkish J Med Sci 45:857–864

    CAS  Google Scholar 

  • Tordjman S, Chokron S, Delorme R, Charrier A, Bellissant E, Jaafari N, Fougerou C (2017) Melatonin: pharmacology, functions and therapeutic benefits. Curr Neuropharmacol 15:434–443

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trauner M, Fuchs CD (2022) Novel therapeutic targets for cholestatic and fatty liver disease. Gut 71:194–209

    CAS  PubMed  Google Scholar 

  • Vairetti M, Pasqua LGD, Cagna M, Richelmi P, Ferrigno A, Berardo C (2021) Changes in glutathione content in liver diseases: an update. Antioxidants 10:364

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Xiong Y, Zhang A, Zhao N, Zhang J, Zhao D, Zhenhai Yu, Ning Xu, Yin Y, Luan X (2020) Oligosaccharide attenuates aging-related liver dysfunction by activating Nrf2 antioxidant signaling. Food Sci Nutr 8:3872–3881

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Zhu L, Duo Xu, Gao L, Li Y, Liang B, Zhang X, Yue Y (2021) Intrahepatic cholestasis of pregnancy is associated with reduced nitric oxide synthase (iNOS) in plasma and placentas: a pilot study. Med Sci Monit 27:e930176–e930181

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wei L, Yang J, Wang M, Sheng-Nan Xu, Liang H-M, Zhou Qi (2014) Sodium ferulate lowers portal pressure in rats with secondary biliary cirrhosis through the RhoA/Rho-kinase signaling pathway: a preliminary study. Int J Mol Med 34:1257–1267

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wiering L, Tacke F (2023) Treating inflammation to combat non-alcoholic fatty liver disease. J Endocrinol 256

  • Williamson KD, Chapman RW (2016) New therapeutic strategies for primary sclerosing cholangitis. In Seminars in liver disease, 005–14. Thieme Medical Publishers

  • Yan J-Y, Ai G, Zhang X-J, Hai-Jiang Xu, Huang Z-M (2015) Investigations of the total flavonoids extracted from flowers of Abelmoschus manihot (L.) Medic against α-naphthylisothiocyanate-induced cholestatic liver injury in rats. J Ethnopharmacol 172:202–213

    CAS  PubMed  Google Scholar 

  • Yardimci S, Bostanci EB , Ozer I, Dalgic T, Surmelioglu A, Aydog G, Akoglu M (2012) Sildenafil accelerates liver regeneration after partial hepatectomy in rats. In Transplantation proceedings, 1747–50. Elsevier

  • Yokoda RT, Rodriguez EA (2020) Pathogenesis of cholestatic liver diseases. World J Hepatol 12:423

    PubMed  PubMed Central  Google Scholar 

  • Zhang P, Li J, Li M, Sui Y, Zhou Y, Sun Y (2020) Effects of lycopene on metabolism of glycolipid and inflammation in non-alcoholic fatty liver disease rats. Wei Sheng Yan Jiu 49:254–71

    PubMed  Google Scholar 

  • Zhang R, Chu K, Zhao N, Jingjing Wu, Ma L, Zhu C, Chen X, Wei G, Liao M (2020b) Corilagin alleviates nonalcoholic fatty liver disease in high-fat diet-induced C57BL/6 mice by ameliorating oxidative stress and restoring autophagic flux. Front Pharmacol 10:1693

    PubMed  PubMed Central  Google Scholar 

  • Zhao HL, Harding SV, Marinangeli CPF, Kim YS, Jones PJH (2008) Hypocholesterolemic and anti-obesity effects of saponins from Platycodon grandiflorum in hamsters fed atherogenic diets. J Food Sci 73:H195–H200

    CAS  PubMed  Google Scholar 

  • Zheng Y, Zhang R, Shi W, Li L, Liu H, Chen Z, Longhuo Wu (2020) Metabolism and pharmacological activities of the natural health-benefiting compound diosmin. Food Funct 11:8472–8492

    CAS  PubMed  Google Scholar 

  • Zhou L, An X-F, Teng S-C, Liu J-S, Shang W-B, Zhang A-H, Yuan Y-G, Jiang-Yi Yu (2012) Pretreatment with the total flavone glycosides of Flos Abelmoschus manihot and hyperoside prevents glomerular podocyte apoptosis in streptozotocin-induced diabetic nephropathy. J Med Food 15:461–468

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Naser-Aldin Lashgari: Data curation, Methodology, Writing- Original draft preparation, Danial Khayatan: Data curation, Writing- Original draft preparation, Nazanin Momeni Roudsari: Data curation, Writing- Original draft preparation, Saeideh Momtaz: Conceptualization, Writing, Reviewing and Editing, Ahmad Reza Dehpour: Supervision, Editing, Amir Hossein Abdolghaffari: Conceptualization, Supervision. The authors confirm that no paper mill and artificial intelligence was used.

Corresponding authors

Correspondence to Ahmad Reza Dehpour or Amir Hossein Abdolghaffari.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• The NO signaling pathways play significant roles in the pathogenesis of liver diseases induced by cholestasis.

• Increase of NO in biological fluids and tissues exacerbates the inflammatory responses.

• Natural products may be candidates as therapeutic choices in the prevention and treatment of liver diseases induced by cholestasis.

• Some chemical compounds such as ursodeoxycholic acid, dexamethasone, rosuvastatin, melatonin, and sildenafil can reduce the NO production and iNOS expression via various pathways such as JAK/STAT, NF-κB, and TLR4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lashgari, NA., Khayatan, D., Roudsari, N.M. et al. Therapeutic approaches for cholestatic liver diseases: the role of nitric oxide pathway. Naunyn-Schmiedeberg's Arch Pharmacol 397, 1433–1454 (2024). https://doi.org/10.1007/s00210-023-02684-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-023-02684-2

Keywords

Navigation