Skip to main content

Advertisement

Log in

Pharmacological evaluation of the gabapentin salicylaldehyde derivative, gabapentsal, against tonic and phasic pain models, inflammation, and pyrexia

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Gabapentinoids are effective drugs in most animal models of pain and inflammation with variable effects in humans. The current study evaluated the pharmacological activity of gabapentin (GBP) and its salicylaldehyde derivative (gabapentsal; [2-(1-(((2-hydroxybenzylidene) amino) methyl) cyclohexyl) acetic acid]; GPS) in well-established mouse models of nociceptive pain, inflammatory edema, and pyrexia at doses of 25–100 mg/kg. GPS allayed tonic visceral pain as reflected by acetic acid-induced nociception and it also diminished thermally induced nociception as a mimic of phasic thermal pain. Antagonism of GPS-induced antinociceptive activities by naloxone (NLX, 1.0 mg/kg, subcutaneously, s.c), beta-funaltrexamine (β-FNT, 5.0 mg/kg, s.c), naltrindole (NT, 1.0 mg/kg, s.c), and nor-binaltorphimine (NOR-BNI, 5.0 mg/kg, s.c), and pentylenetetrazole (PTZ-15 mg/kg, intraperitoneally, i.p) implicated an involvement of both opioidergic and GABAergic mechanisms. Tail immersion test was conducted in order to delineate the mechanistic insights of antinociceptive response. Inflammatory edema induced by carrageenan, histamine, or serotonin was also effectively reversed by GPS in a fashion analogous to aspirin (150 mg/kg, i.p), chlorpheniramine (1.0 mg/kg, i.p), and mianserin (1.0 mg/kg, i.p), respectively. Additionally, yeast-induced pyrexia was decreased by GPS in a comparable manner to acetaminophen (50 mg/kg, i.p). These observations suggest that GPS possesses ameliorative properties in tonic, phasic, and tail immersion tests of nociception via opioidergic and GABAergic mechanisms, curbs inflammatory edema, and is antipyretic in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the article.

References

  • Abdel-Salam OM, Sleem AA (2009) Study of the analgesic, anti-inflammatory, and gastric effects of gabapentin. Drug Discov Ther 3:18–26

  • Ahmad N, Subhan F, Islam NU, Shahid M, Rahman FU, Fawad K (2017a) A novel pregabalin functionalized salicylaldehyde derivative afforded prospective pain, inflammation, and pyrexia alleviating propensities. Archiv der Pharmazie 350

  • Ahmad N, Subhan F, Islam NU, Shahid M, Rahman FU, Sewell RD (2017b) Gabapentin and its salicylaldehyde derivative alleviate allodynia and hypoalgesia in a cisplatin-induced neuropathic pain model. Eur J Pharmacol 814:302–312

    Article  CAS  PubMed  Google Scholar 

  • Akbar S, Subhan F, Karim N, Shahid M, Ahmad N, Ali G, Mahmood W, Fawad K (2016) 6-Methoxyflavanone attenuates mechanical allodynia and vulvodynia in the streptozotocin-induced diabetic neuropathic pain. Biomed Pharmacother 84:962–971

    Article  CAS  PubMed  Google Scholar 

  • Ali G, Subhan F, Wadood A, Ullah N, Islam NU, Khan I (2013) Pharmacological evaluation, molecular docking and dynamics simulation studies of salicyl alcohol nitrogen containing derivatives. Afr J Pharm Pharmacol 7:585–596

    Article  CAS  Google Scholar 

  • Aman U, Subhan F, Shahid M, Akbar S, Ahmad N, Ali G, Fawad K, Sewell RDE (2016) Passiflora incarnata attenuation of neuropathic allodynia and vulvodynia apropos GABA-ergic and opioidergic antinociceptive and behavioural mechanisms. BMC Complement Altern Med 16:77

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aronoff DM, Neilson EG (2001) Antipyretics: mechanisms of action and clinical use in fever suppression. Am J Med 111:304–315

    Article  CAS  PubMed  Google Scholar 

  • Ashlyn Carr MCF (2019) What is the evidence to support clonidine as an adjuvant analgesic? Pract Pain Mangement. https://www.practicalpainmanagement.com/treatments/pharmacological/non-opioids/what-evidence-support-clonidine-adjuvant-analgesic. Accessed 1-7-2020 2020

  • Aures D, Håkanson R, Schauer A (1968) Histidine decarboxylase and DOPA decarboxylase in the rat stomach. Properties and cellular localization. Eur J Pharmacol 3:217–234

    Article  CAS  PubMed  Google Scholar 

  • Bennett JM, Reeves G, Billman GE, Sturmberg JP (2018) Inflammation-nature’s way to efficiently respond to all types of challenges: implications for understanding and managing “the epidemic” of chronic diseases. Front Med 5:316–316. https://doi.org/10.3389/fmed.2018.00316

    Article  Google Scholar 

  • Bighetti EJ, Hiruma-Lima CA, Gracioso JS, Brito ARS (1999) Anti-inflammatory and antinociceptive effects in rodents of the essential oil of Croton cajucara Benth. J Pharm Pharmacol 51:1447–1453

    Article  CAS  PubMed  Google Scholar 

  • Bruguerolle B, Roucoules X (1994) Time-dependent changes in body temperature rhythm induced in rats by brewer’s yeast injection. Chronobiol Int 11:180–186

    Article  CAS  PubMed  Google Scholar 

  • Calixto JB, Beirith A, Ferreira J, Santos AR, Filho VC, Yunes RA (2000) Naturally occurring antinociceptive substances from plants. Phytother Res 14:401–418

    Article  CAS  PubMed  Google Scholar 

  • Chahl LA (1996) Opioids-mechanisms of action

  • Chaplan SR, Eckert III WA, Carruthers NI (2010) Drug discovery and development for pain. In: Translational pain research: from mouse to man. CRC Press/Taylor & Francis,

  • Chapman C, Case K, Dubner R (1985) Pain measurement: an update. Pain 22:1–31

    Article  CAS  PubMed  Google Scholar 

  • Coura CO, Souza RB, Rodrigues JAG, Vanderlei ESO, de Araújo IWF, Ribeiro NA, Frota AF, Ribeiro KA, Chaves HV, Pereira KMA, da Cunha RMS, Bezerra MM, Benevides NMB (2015) Mechanisms involved in the anti-inflammatory action of a polysulfated fraction from Gracilaria cornea in rats. PLoS One 10:e0119319–e0119319. https://doi.org/10.1371/journal.pone.0119319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’amour FE, Smith DL (1941) A method for determining loss of pain sensation. J Pharmacol Exp Ther 72:74–79

    Google Scholar 

  • Dias JM, de Brito TV, de Aguiar Magalhães D, da Silva Santos PW, Batista JA, do Nascimento Dias EG, de Barros Fernandes H, Damasceno SRB, Silva RO, Aragão KS, Souza MHLP, Medeiros JVR, Barbosa ALR (2014) Gabapentin, a synthetic analogue of gamma aminobutyric acid, reverses systemic acute inflammation and oxidative stress in mice. Inflammation 37:1826–1836

    Article  CAS  PubMed  Google Scholar 

  • Feng Y, Cui M, Willis WD (2003) Gabapentin markedly reduces acetic acid–induced visceral nociception. J Am Soc Anesthesiol 98:729–733

    Article  CAS  Google Scholar 

  • Fürst S (1999) Transmitters involved in antinociception in the spinal cord. Brain Res Bull 48:129–141

    Article  PubMed  Google Scholar 

  • Goldfrank LR, Hoffman RS, Howland MA, Lewin NA (2006) Goldfrank’s toxicologic emergencies. McGraw Hill Professional

  • Hinz B, Brune K (2012) Paracetamol and cyclooxygenase inhibition: is there a cause for concern? Ann Rheum Dis 71:20–25

    Article  CAS  PubMed  Google Scholar 

  • Irwin S, Bennett DR, Hendershot LC, Seevers M, Houde RW (1951) The effects of morphine, methadone and meperidine on some reflex responses of spinal animals to nociceptive stimulation. J Pharmacol Exp Ther 101:132–143

    CAS  PubMed  Google Scholar 

  • Jensen TS (2002) Anticonvulsants in neuropathic pain: rationale and clinical evidence. Eur J Pain 6:61–68

    Article  CAS  PubMed  Google Scholar 

  • Jensen TS, Yaksh TL (1986) III. Comparison of the antinociceptive action of mu and delta opioid receptor ligands in the periaqueductal gray matter, medial and paramedial ventral medulla in the rat as studied by the microinjection technique. Brain Res 372:301–312

    Article  CAS  PubMed  Google Scholar 

  • Jutel M, Akdis M, Akdis C (2009) Histamine, histamine receptors and their role in immune pathology. Clin Exp Allergy 39:1786–1800

    Article  CAS  PubMed  Google Scholar 

  • Kamibayashi T, Maze M (2000) Clinical uses of α2-adrenergic agonists. Anesthesiology 93:1345–1349

    Article  CAS  PubMed  Google Scholar 

  • Kilic FS, Sirmagul B, Yildirim E, Oner S, Erol K (2012) Antinociceptive effects of gabapentin & its mechanism of action in experimental animal studies. Indian J Med Res 135:630

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kitchen I, Pinker SR (1990) Antagonism of swim-stress-induced antinociception by the δ-opioid receptor antagonist naltrindole in adult and young rats. Br J Pharmacol 100:685–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunder CA, St John AL, Abraham SN (2011) Mast cell modulation of the vascular and lymphatic endothelium. Blood 118:5383–5393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larsen GL, Henson PM (1983) Mediators of inflammation. Annu Rev Immunol 1:335–359

    Article  CAS  PubMed  Google Scholar 

  • Lipp J (1991) Possible mechanisms of morphine analgesia. Clin Neuropharmacol 14:131–147. https://doi.org/10.1097/00002826-199104000-00003

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Westlund KN (1999) Gabapentin attenuates nociceptive behaviors in an acute arthritis model in rats. J Pharmacol Exp Ther 290:214–219

    CAS  PubMed  Google Scholar 

  • Łuszczki JJ (2010) Dose-response relationship analysis of pregabalin doses and their antinociceptive effects in hot-plate test in mice. Pharmacol Rep 62:942–948

    Article  PubMed  Google Scholar 

  • Łuszczki JJ, Kołacz A, Wojda E, Czuczwar M, Przesmycki K, Czuczwar SJ (2009) Synergistic interaction of gabapentin with tiagabine in the hot-plate test in mice: an isobolographic analysis. Pharmacol Rep 61:459–467

    Article  PubMed  Google Scholar 

  • Magnus L (1999) Nonepileptic uses of gabapentin. Epilepsia 40:s66–s72

    Article  CAS  PubMed  Google Scholar 

  • Martin WR (1976) Drugs five years later: naloxone. Ann Intern Med 85:765–768

    Article  CAS  PubMed  Google Scholar 

  • McCarson KE, Enna S (2014) GABA pharmacology: the search for analgesics. Neurochem Res 39:1948–1963

    Article  CAS  PubMed  Google Scholar 

  • Meymandi M-S, Sepehri G (2008) Gabapentin action and interaction on the antinociceptive effect of morphine on visceral pain in mice. Eur J Anaesthesiol 25:129–134

    Article  CAS  PubMed  Google Scholar 

  • Mobarakeh JI, Sakurada S, Katsuyama S, Kutsuwa M, Kuramasu A, Lin ZY, Watanabe T, Hashimoto Y, Watanabe T, Yanai K (2000) Role of histamine H 1 receptor in pain perception: a study of the receptor gene knockout mice. Eur J Pharmacol 391:81–89

    Article  CAS  PubMed  Google Scholar 

  • Moretti R, Antonello RM, Torre P, Cazzato G (2000) Headache and neck pain: gabapentin as a possible treatment. J Headache Pain 1:155–161

    Article  CAS  PubMed Central  Google Scholar 

  • Morteza-Semnani K, Saeedi M, Hamidian M (2004) Anti-inflammatory and analgesic activity of the topical preparation of Glaucium grandiflorum. Fitoterapia 75:123–129

    Article  CAS  PubMed  Google Scholar 

  • Ness T (1999) Models of visceral nociception. ILAR J 40:119–128

    Article  PubMed  Google Scholar 

  • Oates JA, Wood AJ, Brooks PM, Day RO (1991) Nonsteroidal antiinflammatory drugs—differences and similarities. N Engl J Med 324:1716–1725

    Article  Google Scholar 

  • Ogoina D (2011a) Fever, fever patterns and diseases called ‘fever’—a review. J Infect Public Health 4:108–124. https://doi.org/10.1016/j.jiph.2011.05.002

    Article  PubMed  Google Scholar 

  • Ogoina D (2011b) Fever, fever patterns and diseases called ‘fever’–a review. J Infect Public Health 4:108–124

    Article  PubMed  Google Scholar 

  • Pakulska W, Czarnecka E (2004) The effect of gabapentin on antinociceptive action of analgesics. Acta Pol Pharm 61:393–400

    CAS  PubMed  Google Scholar 

  • Paller CJ, Campbell CM, Edwards RR, Dobs AS (2009) Sex-based differences in pain perception and treatment. Pain Med (Malden, Mass) 10:289–299. https://doi.org/10.1111/j.1526-4637.2008.00558.x

    Article  Google Scholar 

  • Platko S (2015) Mast cells shape early life programming of social behavior. The Ohio State University

  • Pradhan AA, Befort K, Nozaki C, Gavériaux-Ruff C, Kieffer BL (2011) The delta opioid receptor: an evolving target for the treatment of brain disorders. Trends Pharmacol Sci 32:581–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quartana PJ, Campbell CM, Edwards RR (2009) Pain catastrophizing: a critical review. Expert Rev Neurother 9:745–758. https://doi.org/10.1586/ern.09.34

    Article  PubMed  PubMed Central  Google Scholar 

  • Quintero GC (2017) Review about gabapentin misuse, interactions, contraindications and side effects. J Exp Pharmacol 9:13–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramaswamy S, Wilson JA, Colvin L (2013) Non-opioid-based adjuvant analgesia in perioperative care. Continuing Educ Anaesthesia, Critical Care Pain 13:152–157

    Article  Google Scholar 

  • Rozenberg I, Sluka SHM, Rohrer L, Hofmann J, Becher B, Akhmedov A, Soliz J, Mocharla P, Borén J, Johansen P̊, Steffel J, Watanabe T, Lüscher TF, Tanner FC (2010a) Histamine H1 receptor promotes atherosclerotic lesion formation by increasing vascular permeability for low-density lipoproteins. Arterioscler Thromb Vasc Biol 30:923–930

    Article  CAS  PubMed  Google Scholar 

  • Rozenberg I, Sluka SHM, Rohrer L, Hofmann J, Becher B, Akhmedov A, Soliz J, Mocharla P, Borén J, Johansen P̊, Steffel J, Watanabe T, Lüscher TF, Tanner FC (2010b) Histamine H1 receptor promotes atherosclerotic lesion formation by increasing vascular permeability for low-density lipoproteins. Atertio Thromb Vasc Biol 30:923–930

    Article  CAS  Google Scholar 

  • Saha S, Guria T, Singha T (2013) Maity TK (2013) Evaluation of analgesic and anti-inflammatory activity of chloroform and methanol extracts of Centella asiatica Linn. Int Scholarly Res Notices

  • Sansone RA, Sansone LA (2008) Pain, pain, go away: antidepressants and pain management. Psychiatry (Edgmont) 5:16

    Google Scholar 

  • Shahid M, Subhan F, Ahmad N, Ali G, Akbar S, Fawad K (2017) Topical gabapentin gel alleviates allodynia and hyperalgesia in the chronic sciatic nerve constriction injury neuropathic pain model. Eur J Pain 21:668–680. https://doi.org/10.1002/ejp.971

    Article  CAS  PubMed  Google Scholar 

  • Shahid M, Subhan F, Ahmad N, Sewell RDE (2019) Efficacy of a topical gabapentin gel in a cisplatin paradigm of chemotherapy-induced peripheral neuropathy. BMC Pharmacol Toxicol 20:51. https://doi.org/10.1186/s40360-019-0329-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shajib M, Khan W (2015) The role of serotonin and its receptors in activation of immune responses and inflammation. Acta Physiol 213:561–574

    Article  CAS  Google Scholar 

  • Shimoyama M, Shimoyama N, Inturrisi CE, Elliott KJ (1997) Gabapentin enhances the antinociceptive effects of spinal morphine in the rat tail-flick test. Pain 72:375–382

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Majumdar D, Rehan H (1996) Evaluation of anti-inflammatory potential of fixed oil of Ocimum sanctum (Holybasil) and its possible mechanism of action. J Ethnopharmacol 54:19–26

    Article  CAS  PubMed  Google Scholar 

  • Stepanovic-Petrovic RM et al (2008) The antinociceptive effects of anticonvulsants in a mouse visceral pain model. Anesth Analg 106:1897–1903

    Article  CAS  PubMed  Google Scholar 

  • Stevenson GW, Folk JE, Linsenmayer DC, Rice KC, Negus SS (2003) Opioid interactions in rhesus monkeys: effects of δ+ μ and δ+ κ agonists on schedule-controlled responding and thermal nociception. J Pharmacol Exp Ther 307:1054–1064

    Article  CAS  PubMed  Google Scholar 

  • Subhan F, Abbas M, Rauf K, Arfan M, Sewell R, Ali G (2010) The role of opioidergic mechanism in the activity of Bacopa monnieri extract against tonic and acute phasic pain modalities. Pharmacol Online 3:903–914

    Google Scholar 

  • Thompson GL, Kelly E, Christopoulos A, Canals M (2015) Novel GPCR paradigms at the μ-opioid receptor. Br J Pharmacol 172:287–296

    Article  CAS  PubMed  Google Scholar 

  • Thurmond RL, Gelfand EW, Dunford PJ (2008) The role of histamine H 1 and H 4 receptors in allergic inflammation: the search for new antihistamines. Nat Rev Drug Discov 7:41–53

    Article  CAS  PubMed  Google Scholar 

  • Valverde O, Maldonado R, Kieffer BL (1998) Recent findings on the mechanism of action of morphine. CNS Drugs 10:1–10

    Article  CAS  Google Scholar 

  • Vanderah TW (2010) Delta and kappa opioid receptors as suitable drug targets for pain. Clin J Pain 26:S10–S15

    Article  PubMed  Google Scholar 

  • Verma V, Singh N, Singh Jaggi A (2014) Pregabalin in neuropathic pain: evidences and possible mechanisms. Curr Neuropharmacol 12:44–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu H, Denna TH, Storkersen JN, Gerriets VA (2019) Beyond a neurotransmitter: the role of serotonin in inflammation and immunity. Pharmacol Res 140:100–114

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are thankful to Pakistan Council of Scientific and Industrial Research (PCSIR) laboratories for providing us the opioid antagonists beta-funaltrexamine, naltrindole, and nor-binaltorphimine for this study.

Code availability

Gabapentin (PubChem CID: 3446), aspirin (PubChem CID: 2244), chlorpheniramine (PubChem CID: 2725), mianserin (PubChem CID: 4184), acetaminophen (PubChem CID: 1983).

Funding

This study was financially supported by the Higher Education Commission of Pakistan (20-4422/NRPU/R and D/HEC 2014/307).

Author information

Authors and Affiliations

Authors

Contributions

FS, being the research supervisor, provided guidance to the research group. NA, FS, NI, and MS conceived the idea, in planning and conducting experiments throughout the study duration. NU, RU, MUA, and MK helped in providing the chemicals needed during the research work. SA and IU provided their input during the experiments. NA and MS performed the experiments and prepared the manuscript and RDES critically revised and helped in finalizing the manuscript. All authors read and approved the manuscript. The authors declare that all data were generated in-house and that no paper mill was used.

Corresponding author

Correspondence to Nisar Ahmad.

Ethics declarations

Ethics approval

All the experimental procedures employed in this study on live animals were conducted in compliance with the Animals’ Scientific Procedures Act 1986 (UK), the guidelines of Animal Research: Reporting In Vivo experiments (ARRIVE), and International Association for the Study of Pain (IASP). All the procedures were approved by the Animals Research Ethical Committee of the Department of Pharmacy, University of Peshawar (Reference No. 10/EC-15/Pharm) before commencement of the study.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Immunoblot data

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(XLSX 11 kb)

ESM 2

(XLSX 11 kb)

ESM 3

(XLSX 11 kb)

ESM 4

(XLSX 11 kb)

ESM 5

(XLSX 11 kb)

ESM 6

(PZF 18 kb)

ESM 7

(XLSX 11 kb)

ESM 8

(XLSX 11 kb)

ESM 9

(XLSX 11 kb)

ESM 10

(XLSX 11 kb)

ESM 11

(XLSX 11 kb)

ESM 12

(XLSX 11 kb)

ESM 13

(XLSX 11 kb)

ESM 14

(XLSX 11 kb)

ESM 15

(XLSX 11 kb)

ESM 16

(XLSX 10 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, N., Subhan, F., Islam, N.U. et al. Pharmacological evaluation of the gabapentin salicylaldehyde derivative, gabapentsal, against tonic and phasic pain models, inflammation, and pyrexia. Naunyn-Schmiedeberg's Arch Pharmacol 394, 2033–2047 (2021). https://doi.org/10.1007/s00210-021-02118-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-021-02118-x

Keywords

Navigation