Skip to main content
Log in

Isoespintanol, a monoterpene isolated from oxandra cf xylopioides, ameliorates the myocardial ischemia-reperfusion injury by AKT/PKCε/eNOS-dependent pathways

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

To determine the actions of isoespintanol (Isoesp) on post-ischemic myocardial and mitochondrial alterations.

Methods

Hearts removed from Wistar rats were perfused by 20 min. After this period, the coronary flow was interrupted by half an hour and re-established during 1 h. In the treated group, Isoesp was administered at the beginning of reperfusion. To assess the participation of ε isoform of protein kinase C (PKCε), protein kinase B (PKB/Akt), and nitric oxide synthase (NOS), hearts were treated with Isoesp plus the respective inhibitors (chelerythrine, wortmannin, and N-nitro-l-arginine methyl ester). Cell death was determined by triphenyl tetrazolium chloride staining technique. Post-ischemic recovery of contractility, oxidative stress, and content of phosphorylated forms of PKCε, Akt, and eNOS were also examined. Mitochondrial state was assessed through the measurement of calcium-mediated response, calcium retention capacity, and mitochondrial potential.

Results

Isoesp limited cell death, decreased post-ischemic dysfunction and oxidative stress, improved mitochondrial state, and increased the expression of PKCε, Akt, and eNOS phosphorylated. All these beneficial effects achieved by Isoesp were annulled by the inhibitors.

Conclusion

These findings suggest that activation of Akt/eNOS and PKCε signaling pathways are involved in the development of Isoesp-induced cardiac and mitochondria tolerance to ischemia-reperfusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

Isoesp:

Isoespintanol

NOS:

Nitric oxide synthase

l-NAME:

l-NG-Nitroarginine methyl ester

PKCε:

Protein kinase C ε

Che:

Chelerythrine

Akt:

Protein kinase B

Wort:

Wortmannin

DMSO:

Dimethyl sulfoxide

CR:

Coronary resistance

CPP:

Coronary perfusion pressure

CF:

Coronary flow

GSH:

Reduced glutathione

TBARS:

Thiobarbituric acid reactive substances

LSD:

Light scattering decrease

CRC:

Ca2+ retention capacity

ΔΨ:

Mitochondrial membrane potential

mPTP:

Mitochondrial permeability transition pore

TTC:

Triphenyltetrazolium chloride

LVDP:

Left ventricular developed pressure

+dP/dtmax :

Maximal velocity of rise of left ventricular pressure

LVEDP:

Left ventricular end diastolic pressure

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

ROS:

Radical oxygen species

References

  • Baines CP, Song CX, Zheng YT, Wang GW, Zhang J, Wang OL, Guo Y, Bolli R, Cardwell EM, Ping P (2003) Protein kinase Cepsilon interacts with and inhibits the permeability transition pore in cardiac mitochondria. Circ Res 92(8):873–880

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bice JS, Jones BR, Chamberlain GR, Baxter GF (2016) Nitric oxide treatments as adjuncts to reperfusion in acute myocardial infarction: a systematic review of experimental and clinical studies. Basic Res Cardiol 111:23–38

    PubMed  PubMed Central  Google Scholar 

  • Boengler K, Lochnit G, Schulz R (2018) Mitochondria “THE” target of myocardial conditioning. Am J Physiol Heart Circ Physiol 315(5):H1215–H1231

    CAS  PubMed  Google Scholar 

  • Britto RM, Silva-Neto JAD, Mesquita TRR, Vasconcelos CML, de Almeida GKM, Jesus ICG, Santos PHD, Souza DS, Miguel-Dos-Santos R, de Sá LA, Dos Santos FSM, Pereira-Filho RN, Albuquerque-Júnior RLC, Quintans-Júnior LJ, Guatimosim S, Lauton-Santos S (2018) Myrtenol protects against myocardial ischemia-reperfusion injury through antioxidant and anti-apoptotic dependent mechanisms. Food Chem Toxicol 111:557–566

    PubMed  Google Scholar 

  • Chen Y, Ba L, Huang W, Liu Y, Pan H, Mingyao P, Shi P, Wang Y, Li S, Qi H, Sun H, Cao Y (2017) Role of carvacrol in cardioprotection against myocardial ischemia/reperfusion injury in rats through activation of MAPK/ERK and Akt/eNOS signaling pathways. Eur J Pharmacol 796:90–100

    CAS  PubMed  Google Scholar 

  • Chen C, Du P, Wang J (2015) Paeoniflorin ameliorates acute myocardial infarction of rats by inhibiting inflammation and inducible nitric oxide synthase signaling pathways. Mo Med Rep 12:3937–3943

    CAS  Google Scholar 

  • Davidson SM, Ferdinandy P, Andreadou I, Bøtker HE, Heusch G, Ibáñez B, Ovize M, Schulz R, Yellon DM, Hausenloy DJ, Garcia-Dorado D (2019) Multitarget strategies to reduce myocardial ischemia/reperfusion injury: JACC review Topic of the Week. J Am Coll Cardiol 73(1):89–99

    PubMed  Google Scholar 

  • Fantinelli JC, Cuéllar Álvarez LN, González Arbeláez LF, Ciocci Pardo A, Galeano García PL, Schinella GR, Mosca SM (2017) Acute treatment with copoazú fermented extract ameliorates myocardial ischemia-reperfusion injury via eNOS activation. J Funct Foods 34:470–477

    CAS  Google Scholar 

  • Gavilánez Buñay TC, Colareda GA, Ragone MI, Bonilla M, Rojano BA, Schinella GR, Consolini A (2018) Intestinal, urinary and uterine antispasmodic effects of isoespintanol, metabolite from Oxandra xylopioides leaves. Phytomedicine 51:20–28

    PubMed  Google Scholar 

  • González Arbeláez LF, Fantinelli JC, Ciocci Pardo A, Caldiz CI, Ríos JL, Schinella GR, Mosca SM (2016b) Effect of Ilex paraguariensis (yerba mate) extract on infarct size in isolated rat heart: mechanisms involved. Food Funct 7:816–824

    PubMed  Google Scholar 

  • González Arbeláez LF, Ciocci Pardo A, Fantinelli JC, Caldiz CI, Ríos JL, Schinella GR, Mosca SM (2016a) Ex vivo treatment with a polyphenol-enriched cocoa extract ameliorates myocardial infarct and postischemic mitochondrial injury in normotensive and hypertensive rats. J Agric Food Chem 64:5180–5187

    PubMed  Google Scholar 

  • González Arbeláez LF, Ciocci Pardo A, Fantinelli JC, Schinella GR, Mosca SM, Ríos JL (2018) Cardioprotection and natural polyphenols: an update of clinical and experimental studies. Food & Function 9(12):6129–6145

    Google Scholar 

  • Heusch G (2015) Molecular basis of cardioprotection: signal transduction in ischemic pre-, post-, and remote conditioning. Circ Res 116(4):674–699

    CAS  PubMed  Google Scholar 

  • Hocquemiller R, Cortes D, Arango GJ, Myint SH, Cavé A, Angelo A, Muñoz V, Fournet A (1991) Isolement et synthese de l’espintanol, nouveau monoterpene antiparasitaire. J Nat Prod. 54:445–452

    CAS  PubMed  Google Scholar 

  • Inagaki K, Churchill E, Mochly-Rosen D (2006) Epsilon protein kinase C as a potential therapeutic target for the ischemic heart. Cardiovasc Res 70:222–230

    CAS  PubMed  Google Scholar 

  • Kawakami Y, Nishimoto H, Kitaura J, Maeda-Yamamoto M, Kato RM, Littman DR, Leitges M, Rawlings DJ, Kawakami T (2004) Protein kinase C betaII regulates Akt phosphorylation on Ser-473 in a cell type- and stimulus-specific fashion. J Biol Chem 279:47720–47725

    CAS  PubMed  Google Scholar 

  • Kawasaki K, Smith RSJ, Ch-M H, Sun J, Chao J, Liao JK (2003) Activation of the phosphatidylinositol 3-Kinase/protein kinase Akt pathway mediates nitric oxide-induced endothelial cell migration and angiogenesis. Mol Cell Biol 23:5726–5737

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kleinbongard P, Heusch G (2015) Extracellular signalling molecules in the ischaemic/reperfused heart – druggable and translatable for cardioprotection? Br J Pharmacol 172(8):2010–2025

    CAS  PubMed  Google Scholar 

  • Kloner RA (2011) No-Reflow phenomenon: maintaining vascular integrity. J Cardiovasc Pharmacol Ther 16:244–250

    PubMed  Google Scholar 

  • Lesnefsky EJ, Chen Q, Tandler B, Hoppel CL (2017) Mitochondrial dysfunction and myocardial ischemia-reperfusion: implications for novel therapies. Annu Rev Pharmacol Toxicol 57:535–565

    CAS  PubMed  Google Scholar 

  • Levrand S, Vannay-Bouchiche C, Pesse B, Pacher P, Feihl F, Waeber B, Liaudet L (2006) Peroxynitrite is a major trigger of cardiomyocyte apoptosis in vitro and in vivo. Free Radic Biol Med 41:886–895

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Zhou X, Li N, Sun M, Lv J, Xu Z (2015) Herbal drugs against cardiovascular disease: traditional medicine and modern development. Drug Discov Today 20:1074–1086

    PubMed  Google Scholar 

  • Liperoti R, Vetrano DL, Bernabei R, Onder G (2017) Herbal medications in cardiovascular medicine. J Am Coll Cardiol 69:1188–1199

    PubMed  Google Scholar 

  • Lopera YE, Fantinelli J, González Arbeláez LF, Rojano B, Ríos JL, Schinella GR, Mosca SM (2013) Antioxidant activity and cardioprotective effect of a nonalcoholic extract of Vaccinium meridionale Swartz during ischemia-reperfusion in rats. Evid Based Complement Alternat Med 2013:516727

    PubMed  PubMed Central  Google Scholar 

  • Ma XL, Lopez BL, Liu GL, Christopher TA, Ischiropoulos H (1997) Peroxynitrite aggravates myocardial reperfusion injury in the isolated perfused rat heart. Cardiovasc Res 36:195–204

    CAS  PubMed  Google Scholar 

  • Matsui T, Rosenzweig A (2005) Convergent signal transduction pathways controlling cardiomyocyte survival and function: the role of PI 3-kinase and Akt. J Mol Cell Cardiol 38:63–71

    CAS  PubMed  Google Scholar 

  • Mela L, Seitz S (1979) Isolation of mitochondria with emphasis on heart mitochondria from small amounts of tissue. Methods Enzymol 55:39–46

    CAS  PubMed  Google Scholar 

  • Morciano G, Bonora M, Campo G, Aquila G, Rizzo P, Giorgi C, Wieckowski MR, Pinton P (2017) Mechanistic role of mPTP in ischemia-reperfusion injury. Adv Exp Med Biol 982:169–189

    CAS  PubMed  Google Scholar 

  • Murphy E, Steenbergen C (2008) Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol Rev 88:581–609

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murray CJ, Lopez AD (2013) Measuring the global burden of disease. N Engl J Med 369:448–457

    CAS  PubMed  Google Scholar 

  • Nagoor Meeran MF, Jagadeesh GS, Selvaraj P (2016) Thymol, a dietary monoterpene phenol abrogates mitochondrial dysfunction in β-adrenergic agonist induced myocardial infarcted rats by inhibiting oxidative stress. Chem Biol Interact 244:159–168

    CAS  PubMed  Google Scholar 

  • Newman DJ, Cragg GM (2016) Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 79:629–661

    CAS  PubMed  Google Scholar 

  • Niccoli G, Montone RA, Ibanez B, Thiele H, Crea F12, Heusch G, Bulluck H, Hausenloy DJ, Berry C, Stiermaier T, Camici PG, Eitel I (2019) Optimized treatment of ST-elevation myocardial infarction. Circ Res 125:245–258

    CAS  PubMed  Google Scholar 

  • Ong SB, Samangouei P, Kalkhoran SB, Hausenloy DJ (2015) The mitochondrial permeability transition pore and its role in myocardial ischemia reperfusion injury. J Mol Cell Cardiol 78:23–34

    CAS  PubMed  Google Scholar 

  • Pacher P, Schulz R, Liaudet L, Szabo C (2005) Nitrosative stress and pharmacological modulation of heart failure. Trends Pharmacol Sci 26:302–310

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pardo AC, Rinaldi GJ, Mosca SM (2015) Mitochondrial calcium handling in normotensive and spontaneously hypertensive rats: correlation with systolic blood pressure levels. Mitochondrion 20:75–81

    CAS  PubMed  Google Scholar 

  • Ping P, Takano H, Zhang J, Tang XL, Qiu Y, Li RC, Banerjee S, Dawn B, Balafonova Z, Bolli R (1999) Isoform-selective activation of protein kinase C by nitric oxide in the heart of conscious rabbits: a signaling mechanism for both nitric oxide-induced and ischemia-induced preconditioning. Circ Res 84:587–604

    CAS  PubMed  Google Scholar 

  • Raedschelders K, Ansley DM, Chen DDY (2012) The cellular and molecular origin of reactive oxygen species generation during myocardial ischemia and reperfusion. Pharmacol Ther 133:230–255

    CAS  PubMed  Google Scholar 

  • Rojano BA, Pérez E, Figadère B, Martin MT, Recio MC, Giner R, Ríos JL, Schinella G, Sáez J (2007) Constituents of Oxandra cf. xylopioides with anti-inflammatory activity. J Nat Prod 70:835–838

    CAS  PubMed  Google Scholar 

  • Rojano BA, Saez JA, Schinella GR, Quijano J, Vélez E, Gil A, Notario R (2008) Experimental and theoretical determination of the antioxidant properties of isoespintanol (2-isopropyl-3,6-dimethoxy-5-methylphenol). J Mol Struc 877:1–6

    CAS  Google Scholar 

  • Santos MRV, Moreira FV, Fraga BP, Souza DP, Bonjardim LR, Quintans-Junior LJ (2011) Cardiovascular effects of monoterpenes: a review. Rev Bras Farmacogn 21:764–771

    CAS  Google Scholar 

  • Shukla SK, Gupta S, Ojha SK, Sharma SB (2010) Cardiovascular friendly natural products: a promising approach in the management of CVD. Nat Prod Res 24:873–898

    CAS  PubMed  Google Scholar 

  • Soetkamp D, Nguyen TT, Menazza S, Hirschhäuser C, Hendgen-Cotta UB, Rassaf T, Schlüter KD, Boengler K, Murphy E, Schulz R (2014) S-nitrosation of mitochondrial connexin 43 regulates mitochondrial function. Basic Res Cardiol 109(5):433–452

    PubMed  PubMed Central  Google Scholar 

  • Suzuki M1, Sasaki N, Miki T, Sakamoto N, Ohmoto-Sekine Y, Tamagawa M, Seino S, Marbán E, Nakaya H. (2002) Role of sarcolemmal K(ATP) channels in cardioprotection against ischemia/reperfusion injury in mice. J Clin Invest 109: 509-516.

    CAS  PubMed  Google Scholar 

  • Yang M, Camara AK, Wakim BT, Zhou Y, Gadicherla AK, Kwok WM, Stowe DF (2012) Tyrosine nitration of voltage-dependent anion channels in cardiac ischemia-reperfusion: reduction by peroxynitrite scavenging. Biochim Biophys Acta 1817:2049–2059

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Baines CP, Zong C, Cardwell EM, Wang G, Vondriska TM, Ping P (2005) Functional proteomic analysis of a three-tier PKCε-Akt-eNOS signaling module in cardioprotection. Am J Physiol Heart Circ Physiol 288:H954–H961

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Grant M-203 from the National University of La Plata, Argentina, to Dr. S. Mosca.

Author information

Authors and Affiliations

Authors

Contributions

L.G.A. performed the western blots; A.C.P. performed the mitochondrial experiments; J.F. performed the isolated hearts experiments; B.J. isolated and provided the drug; G.Sch. contributed to the conception of the study; S.M. wrote the manuscript. All the authors contributed to the analysis and interpretation of data, critically reviewed, and approved the final draft.

Corresponding author

Correspondence to Susana M Mosca.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González Arbeláez, L.F., Ciocci Pardo, A., Fantinelli, J.C. et al. Isoespintanol, a monoterpene isolated from oxandra cf xylopioides, ameliorates the myocardial ischemia-reperfusion injury by AKT/PKCε/eNOS-dependent pathways. Naunyn-Schmiedeberg's Arch Pharmacol 393, 629–638 (2020). https://doi.org/10.1007/s00210-019-01761-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-019-01761-9

Keywords

Navigation