Skip to main content

Advertisement

Log in

Cardiovascular pharmacology of K2P17.1 (TASK-4, TALK-2) two-pore-domain K+ channels

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

K2P17.1 (TASK-4, TALK-2) potassium channels are expressed in the heart and represent potential targets for pharmacological management of atrial and ventricular arrhythmias. Reduced K2P17.1 expression was found in atria and ventricles of heart failure (HF) patients. Modulation of K2P17.1 currents by antiarrhythmic compounds has not been comprehensively studied to date. The objective of this study was to investigate acute effects of clinically relevant antiarrhythmic drugs on human K2P17.1 channels to provide a more complete picture of K2P17.1 electropharmacology. Whole-cell patch clamp and two-electrode voltage clamp electrophysiology was employed to study human K2P17.1 channel pharmacology. K2P17.1 channels expressed in Xenopus laevis oocytes were screened for sensitivity to antiarrhythmic drugs, revealing significant activation by propafenone (+ 296%; 100 μM), quinidine (+ 58%; 100 μM), mexiletine (+ 21%; 100 μM), propranolol (+ 139%; 100 μM), and metoprolol (+ 17%; 100 μM) within 60 min. In addition, the currents were inhibited by amiodarone (− 13%; 100 μM), sotalol (− 10%; 100 μM), verapamil (− 21%; 100 μM), and ranolazine (− 8%; 100 μM). K2P17.1 channels were not significantly affected by ajmaline and carvedilol. Concentration-dependent K2P17.1 activation by propafenone was characterized in more detail. The onset of activation was fast, and current-voltage relationships were not modulated by propafenone. K2P17.1 activation was confirmed in mammalian Chinese hamster ovary cells, revealing 7.8-fold current increase by 100 μM propafenone. Human K2P17.1 channels were sensitive to multiple antiarrhythmic drugs. Differential pharmacological regulation of repolarizing K2P17.1 background K+ channels may be employed for personalized antiarrhythmic therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altomare C, Barbuti A, Viscomi C, Baruscotti M, DiFrancesco D (2000) Effects of dronedarone on acetylcholine-activated current in rabbit SAN cells. Br J Pharmacol 130:1315–1320

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baker JG (2005) The selectivity of beta-adrenoceptor antagonists at the human beta1, beta2 and beta3 adrenoceptors. Br J Pharmacol 144:317–322

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bébarová M, Matejovic P, Pásek M, Simurdová M, Simurda J (2005) Effect of ajmaline on action potential and ionic currents in rat ventricular myocytes. Gen Physiol Biophys 24:311–325

    PubMed  Google Scholar 

  • Bengtsson C, Johnsson G, Regårdh CG (1975) Plasma levels and effects of metoprolol on blood pressure and heart rate in hypertensive patients after an acute dose and between two doses during long-term treatment. Clin Pharmacol Ther 17:400–408

    Article  PubMed  CAS  Google Scholar 

  • Bigot MC, Debruyne D, Bonnefoy L, Grollier G, Moulin M, Potier JC (1991) Serum digoxin levels related to plasma propafenone levels during concomitant treatment. J Clin Pharmacol 31:521–526

    Article  PubMed  CAS  Google Scholar 

  • Bikou O, Thomas D, Trappe K, Lugenbiel P, Kelemen K, Koch M, Soucek R, Voss F, Becker R, Katus HA, Bauer A (2011) Connexin 43 gene therapy prevents persistent atrial fibrillation in a porcine model. Cardiovasc Res 92:218–225

    Article  PubMed  CAS  Google Scholar 

  • Björkman A, Willcox M, Marbiah N, Payne D (1991) Susceptibility of Plasmodium falciparum to different doses of quinine in vivo and to quinine and quinidine in vitro in relation to chloroquine in Liberia. Bull World Health Organ 69:459–465

    PubMed  PubMed Central  Google Scholar 

  • Cahill SA, Gross GJ (2004) Propafenone and its metabolites preferentially inhibit IKr in rabbit ventricular myocytes. J Pharmacol Exp Ther 308:59–65

    Article  PubMed  CAS  Google Scholar 

  • Chai S, Wan X, Nassal DM, Liu H, Moravec CS, Ramirez-Navarro A, Deschenes I (2017) Contribution of two pore potassium channels to cardiac ventricular action potential revealed using human iPSC-derived cardiomyocytes. Am J Physiol Heart Circ Physiol 312:H1144–H1153

    Article  PubMed  PubMed Central  Google Scholar 

  • Chatelain P, Meysmans L, Mattéazzi JR, Beaufort P, Clinet M (1995) Interaction of the antiarrhythmic agents SR 33589 and amiodarone with the beta-adrenoceptor and adenylate cyclase in rat heart. Br J Pharmacol 116:1949–1956

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen Y, Herness MS (1997) Electrophysiological actions of quinine on voltage-dependent currents in dissociated rat taste cells. Pflugers Arch 434:215–226

    Article  PubMed  CAS  Google Scholar 

  • Decher N, Maier M, Dittrich W, Gassenhuber J, Bruggemann A, Busch AE, Steinmeyer K (2001) Characterization of TASK-4, a novel member of the pH-sensitive, two-pore domain potassium channel family. FEBS Lett 492:84–89

    Article  PubMed  CAS  Google Scholar 

  • Delgado C, Tamargo J, Henzel D, Lorente P (1993) Effects of propafenone on calcium current in guinea-pig ventricular myocytes. Br J Pharmacol 108:721–727

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dobrev D, Hamad B, Kirkpatrick P (2010) Vernakalant. Nat Rev Drug Discov 9:915–916

    Article  PubMed  CAS  Google Scholar 

  • Domingues-Montanari S, Fernández-Cadenas I, Del Río-Espinola A, Mendioroz M, Fernandez-Morales J, Corbeto N, Delgado P, Ribó M, Rubiera M, Obach V, Martí-Fàbregas J, Freijo M, Serena J, Montaner J (2010) KCNK17 genetic variants in ischemic stroke. Atherosclerosis 208:203–209

    Article  PubMed  CAS  Google Scholar 

  • Dorian P (2010) Clinical pharmacology of dronedarone: implications for the therapy of atrial fibrillation. J Cardiovasc Pharmacol Ther 15(4 Suppl):15S–18S

    Article  PubMed  CAS  Google Scholar 

  • Du CY, El Harchi A, Zhang YH, Orchard CH, Hancox JC (2011) Pharmacological inhibition of the hERG potassium channel is modulated by extracellular but not intracellular acidosis. J Cardiovasc Electrophysiol 22:1163–1170

    Article  PubMed  CAS  Google Scholar 

  • Du C, Zhang Y, El Harchi A, Dempsey CE, Hancox JC (2014) Ranolazine inhibition of hERG potassium channels: drug-pore interactions and reduced potency against inactivation mutants. J Mol Cell Cardiol 74:220–230

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Duan D, Fermini B, Nattel S (1993) Potassium channel blocking properties of propafenone in rabbit atrial myocytes. J Pharmacol Exp Ther 264:1113–1123

    PubMed  CAS  Google Scholar 

  • Duprat F, Girard C, Jarretou G, Lazdunski M (2005) Pancreatic two P domain K+ channels TALK-1 and TALK-2 are activated by nitric oxide and reactive oxygen species. J Physiol 562(Pt 1):235–244

    Article  PubMed  CAS  Google Scholar 

  • Enyedi P, Czirják G (2010) Molecular background of leak K+ currents: two-pore domain potassium channels. Physiol Rev 90:559–605

    Article  PubMed  CAS  Google Scholar 

  • Estes NA, Manolis AS, Greenblatt DJ, Garan H, Ruskin JN (1989) Therapeutic serum lidocaine and metabolite concentrations in patients undergoing electrophysiologic study after discontinuation of intravenous lidocaine infusion. Am Heart J 117:1060–1064

    Article  PubMed  Google Scholar 

  • Fedida D (2007) Vernakalant (RSD1235): a novel, atrial-selective antifibrillatory agent. Expert Opin Investig Drugs 16:519–532

    Article  PubMed  CAS  Google Scholar 

  • Fedida D, Orth PM, Chen JY, Lin S, Plouvier B, Jung G, Ezrin AM, Beatch GN (2005) The mechanism of atrial antiarrhythmic action of RSD1235. J Cardiovasc Electrophysiol 16:1227–1238

    Article  PubMed  Google Scholar 

  • Fischer F, Vonderlin N, Zitron E, Seyler C, Scherer D, Becker R, Katus HA, Scholz EP (2013) Inhibition of cardiac Kv1.5 and Kv4.3 potassium channels by the class Ia anti-arrhythmic ajmaline: mode of action. Naunyn Schmiedeberg's Arch Pharmacol 386:991–999

    Article  CAS  Google Scholar 

  • Friedrich C, Rinné S, Zumhagen S, Kiper AK, Silbernagel N, Netter MF, Stallmeyer B, Schulze-Bahr E, Decher N (2014) Gain-of-function mutation in TASK-4 channels and severe cardiac conduction disorder. EMBO Mol Med 6:937–951

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gehr TW, Tenero DM, Boyle DA, Qian Y, Sica DA, Shusterman NH (1999) The pharmacokinetics of carvedilol and its metabolites after single and multiple dose oral administration in patients with hypertension and renal insufficiency. Eur J Clin Pharmacol 55:269–277

    Article  PubMed  CAS  Google Scholar 

  • Gierten J, Ficker E, Bloehs R, Schloemer K, Kathoefer S, Scholz E, Zitron E, Kiesecker C, Bauer A, Becker R, Katus HA, Karle CA, Thomas D (2008) Regulation of two-pore-domain (K2P) potassium leak channels by the tyrosine kinase inhibitor genistein. Br J Pharmacol 154:1680–1690

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gierten J, Hassel D, Schweizer PA, Becker R, Katus HA, Thomas D (2012) Identification and functional characterization of zebrafish K2P10.1 (TREK2) two-pore-domain K+ channels. Biochim Biophys Acta 1818:33–41

    Article  PubMed  CAS  Google Scholar 

  • Girard C, Duprat F, Terrenoire C, Tinel N, Fosset M, Romey G, Lazdunski M, Lesage (2001) Genomic and functional characteristics of novel human pancreatic 2P domain K+ channels. Biochem Biophys Res Commun 282:249–256

    Article  PubMed  CAS  Google Scholar 

  • Goldstein SA, Bockenhauer D, O'Kelly I, Zilberberg N (2001) Potassium leak channels and the KCNK family of two-P-domain subunits. Nat Rev Neurosci 2:175–184

    Article  PubMed  CAS  Google Scholar 

  • Gross GJ, Castle NA (1998) Propafenone inhibition of human atrial myocyte repolarizing currents. J Mol Cell Cardiol 30:783–793

    Article  PubMed  CAS  Google Scholar 

  • Guillemare E, Marion A, Nisato D, Gautier P (2000) Inhibitory effects of dronedarone on muscarinic K+ current in guinea pig atrial cells. J Cardiovasc Pharmacol 36:802–805

    Article  PubMed  CAS  Google Scholar 

  • Haffajee CI, Love JC, Alpert JS, Asdourian GK, Sloan KC (1983) Efficacy and safety of long-term amiodarone in treatment of cardiac arrhythmias: dosage experience. Am Heart J 106:935–943

    Article  PubMed  CAS  Google Scholar 

  • Hancox JC (1997) Amiodarone blocks L-type calcium current in single myocytes isolated from the rabbit atrioventricular node. Gen Pharmacol 29:429–435

    Article  PubMed  CAS  Google Scholar 

  • Hancox JC, Mitcheson JS (1997) Inhibition of L-type calcium current by propafenone in single myocytes isolated from the rabbit atrioventricular node. Br J Pharmacol 121:7–14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harmer AR, Valentin JP, Pollard CE (2011) On the relationship between block of the cardiac Na+ channel and drug-induced prolongation of the QRS complex. Br J Pharmacol 164:260–273

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hirota M, Ohtani H, Hanada E, Sato H, Kotaki H, Uemura H, Nakaya H, Iga T (2000) Influence of extracellular K+ concentrations on quinidine-induced K+ current inhibition in rat ventricular myocytes. J Pharm Pharmacol 52:99–105

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann C, Leitz MR, Oberdorf-Maass S, Lohse MJ, Klotz KN (2004) Comparative pharmacology of human beta-adrenergic receptor subtypes—characterization of stably transfected receptors in CHO cells. Naunyn Schmiedeberg's Arch Pharmacol 369:151–159

    Article  CAS  Google Scholar 

  • Husser D, Binias KH, Stridh M, Sornmo L, Olsson SB, Molling J, Geller C, Klein HU, Bollmann A (2005) Pilot study: Noninvasive monitoring of oral flecainide’s effects on atrial electrophysiology during persistent human atrial fibrillation using the surface electrocardiogram. Ann Noninvasive Electrocardiol 10:206–210

    Article  PubMed  Google Scholar 

  • Jerling M (2006) Clinical pharmacokinetics of ranolazine. Clin Pharmacokinet 45:469–491

    Article  PubMed  CAS  Google Scholar 

  • Jonkers R, van Boxtel CJ, Koopmans RP, Oosterhuis B (1989) A nonsteady-state agonist antagonist interaction model using plasma potassium concentrations to quantify the beta-2 selectivity of beta blockers. J Pharmacol Exp Ther 249:297–302

    PubMed  CAS  Google Scholar 

  • Kamiya K, Nishiyama A, Yasui K, Hojo M, Sanguinetti MC, Kodama I (2001) Short- and long-term effects of amiodarone on the two components of cardiac delayed rectifier K+ current. Circulation 103:1317–1324

    Article  PubMed  CAS  Google Scholar 

  • Kang D, Kim D (2004) Single-channel properties and pH sensitivity of two-pore domain K+ channels of the TALK family. Biochem Biophys Res Commun 315:836–344

    Article  PubMed  CAS  Google Scholar 

  • Karle CA, Kreye VA, Thomas D, Röckl K, Kathöfer S, Zhang W, Zhang W, Kiehn J (2001) Antiarrhythmic drug carvedilol inhibits HERG potassium channels. Cardiovasc Res 49:361–370

    Article  PubMed  CAS  Google Scholar 

  • Keefe DL, Yee YG, Kates RE (1981) Verapamil protein binding in patients and in normal subjects. Clin Pharmacol Ther 29:21–26

    Article  PubMed  CAS  Google Scholar 

  • Kiesecker C, Zitron E, Lück S, Bloehs R, Scholz EP, Kathöfer S, Thomas D, Kreye VA, Katus HA, Schoels W, Karle CA, Kiehn J (2004) Class Ia anti-arrhythmic drug ajmaline blocks HERG potassium channels: mode of action. Naunyn Schmiedeberg's Arch Pharmacol 370:423–435

    Article  CAS  Google Scholar 

  • Köppel C, Wagemann A, Martens F (1989) Pharmacokinetics and antiarrhythmic efficacy of intravenous ajmaline in ventricular arrhythmia of acute onset. Eur J Drug Metab Pharmacokinet 14:161–167

    Article  PubMed  Google Scholar 

  • Koumi S, Sato R, Hayakawa H, Okumura H (1991) Quinidine blocks cardiac sodium current after removal of the fast inactivation process with chloramine-T. J Mol Cell Cardiol 23:427–438

    Article  PubMed  CAS  Google Scholar 

  • Läer S, Neumann J, Scholz H (1997) Interaction between sotalol and an antacid preparation. Br J Clin Pharmacol 43:269–272

    Article  PubMed  PubMed Central  Google Scholar 

  • Lalevée N, Nargeot J, Barrére-Lemaire S, Gautier P, Richard S (2003) Effects of amiodarone and dronedarone on voltage-dependent sodium current in human cardiomyocytes. J Cardiovasc Electrophysiol 14:885–890

    Article  PubMed  Google Scholar 

  • Larsson-Backström C, Arrhenius E, Sagge K (1985) Comparison of the calcium-antagonistic effects of terodiline, nifedipine and verapamil. Acta Pharmacol Toxicol (Copenh) 57:8–17

    Article  Google Scholar 

  • Latini R, Tognoni G, Kates RE (1984) Clinical pharmacokinetics of amiodarone. Clin Pharmacokinet 9:136–156

    Article  PubMed  CAS  Google Scholar 

  • Lish PM, Weikel JH, Dungan KW (1965) Pharmacological and toxicological properties of two new beta-adrenergic receptor antagonists. J Pharmacol Exp Ther 149:161–173

    PubMed  CAS  Google Scholar 

  • Ma Q, Wang Y, Shen Y, Liu X, Zhu X, Zhang H, Liu L, Tan X, Wang L, Wang X (2013) The rs10947803 SNP of KCNK17 is associated with cerebral hemorrhage but not ischemic stroke in a Chinese population. Neurosci Lett 539:82–85

    Article  PubMed  CAS  Google Scholar 

  • Marban E (2002) Cardiac channelopathies. Nature 415:213–218

    Article  PubMed  CAS  Google Scholar 

  • McPhillips JJ, Schwemer GT, Scott DI, Zinny M, Patterson D (1988) Effects of carvedilol on blood pressure in patients with mild to moderate hypertension. A dose response study. Drugs 36(Suppl 6):82–91

    Article  PubMed  Google Scholar 

  • Michel D, Wegener JW, Nawrath H (2002) Effects of quinine and quinidine on the transient outward and on the L-type Ca2+ current in rat ventricular cardiomyocytes. Pharmacology 65:187–192

    Article  PubMed  CAS  Google Scholar 

  • Mitcheson JS, Hancox JC (1997) Modulation by mexiletine of action potentials, L-type Ca current and delayed rectifier K current recorded from isolated rabbit atrioventricular nodal myocytes. Pflugers Arch 434:855–858

    Article  PubMed  CAS  Google Scholar 

  • Mo ZL, Faxel T, Yang YS, Gallavan R, Messing D, Bahinski A (2009) Effect of compound plate composition on measurement of hERG current IC50 using PatchXpress. J Pharmacol Toxicol Methods 60:39–44

    Article  PubMed  CAS  Google Scholar 

  • Morgan T, Anderson A, Cripps J, Adam W (1990) Pharmacokinetics of carvedilol in older and younger patients. J Hum Hypertens 4:709–715

    PubMed  CAS  Google Scholar 

  • Nattel S, Maguy A, Le Bouter S, Yeh YH (2007) Arrhythmogenic ion-channel remodeling in the heart: heart failure, myocardial infarction, and atrial fibrillation. Physiol Rev 87:425–456

    Article  PubMed  CAS  Google Scholar 

  • Nayak TK, Harinath S, Nama S, Somasundaram K, Sikdar SK (2009) Inhibition of human two-pore domain K+ channel TREK1 by local anesthetic lidocaine: negative cooperativity and half-of-sites saturation kinetics. Mol Pharmacol 76:903–917

    Article  PubMed  CAS  Google Scholar 

  • Nicholas J, Boyle DM, Kinney CD, Salathia K, Shanks RG (1986) Plasma concentrations and acceptability of mexiletine given by intramuscular injection in patients admitted to a coronary care unit. J Cardiovasc Pharmacol 8:21–28

    Article  PubMed  CAS  Google Scholar 

  • Niemeyer MI, González-Nilo FD, Zúñiga L, González W, Cid LP, Sepúlveda FV (2007) Neutralization of a single arginine residue gates open a two-pore domain, alkali-activated K+ channel. Proc Natl Acad Sci U S A 104:666–671

    Article  PubMed  CAS  Google Scholar 

  • Orth PM, Hesketh JC, Mak CK, Yang Y, Lin S, Beatch GN, Ezrin AM, Fedida D (2006) RSD1235 blocks late INa and suppresses early afterdepolarizations and torsades de pointes induced by class III agents. Cardiovasc Res 70:486–496

    Article  PubMed  CAS  Google Scholar 

  • Otani M, Fukuda T, Naohara M, Maune H, Senda C, Yamamoto I, Azuma J (2003) Impact of CYP2D6*10 on mexiletine pharmacokinetics in healthy adult volunteers. Eur J Clin Pharmacol 59:395–399

    Article  PubMed  CAS  Google Scholar 

  • Penniman JR, Kim DC, Salata JJ, Imredy JP (2010) Assessing use-dependent inhibition of the cardiac Na+ current (INa) in the PatchXpress automated patch clamp. J Pharmacol Toxicol Methods 62:107–118

    Article  PubMed  CAS  Google Scholar 

  • Pine M, Favrot L, Smith S, McDonald K, Chidsey CA (1975) Correlation of plasma propranolol concentration with therapeutic response in patients with angina pectoris. Circulation 52:886–893

    Article  PubMed  CAS  Google Scholar 

  • Rajamani S, El-Bizri N, Shryock JC, Makielski JC, Belardinelli L (2009) Use-dependent block of cardiac late Na+ current by ranolazine. Heart Rhythm 6:1625–1631

    Article  PubMed  PubMed Central  Google Scholar 

  • Reiter MJ, Higgins SL, Payne AG, Mann DE (1986) Effects of quinidine versus procainamide on the QT interval. Am J Cardiol 58:512–516

    Article  PubMed  CAS  Google Scholar 

  • Ridley JM, Milnes JT, Witchel HJ, Hancox JC (2004) High affinity HERG K+ channel blockade by the antiarrhythmic agent dronedarone: resistance to mutations of the S6 residues Y652 and F656. Biochem Biophys Res Commun 325:883–891

    Article  PubMed  CAS  Google Scholar 

  • Rigby JW, Scott AK, Hawksworth GM, Petrie JC (1985) A comparison of the pharmacokinetics of atenolol, metoprolol, oxprenolol and propranolol in elderly hypertensive and young healthy subjects. Br J Clin Pharmacol 20:327–331

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Roy D, Rowe BH, Stiell IG, Coutu B, Ip JH, Phaneuf D, Lee J, Vidaillet H, Dickinson G, Grant S, Ezrin AM, Beatch GN, Investigators CRAFT (2004) A randomized, controlled trial of RSD1235, a novel anti-arrhythmic agent, in the treatment of recent onset atrial fibrillation. J Am Coll Cardiol 44:2355–2361

    Article  PubMed  CAS  Google Scholar 

  • Sandoz G, Bell SC, Isacoff EY (2011) Optical probing of a dynamic membrane interaction that regulates the TREK1 channel. Proc Natl Acad Sci U S A 108:2605–2610

    Article  PubMed  PubMed Central  Google Scholar 

  • Sandoz G, Levitz J, Kramer RH, Isacoff EY (2012) Optical control of endogenous proteins with a photoswitchable conditional subunit reveals a role for TREK1 in GABAB signaling. Neuron 74:1005–1014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schmidt C, Wiedmann F, Schweizer PA, Becker R, Katus HA, Thomas D (2012) Novel electrophysiological properties of dronedarone: inhibition of human cardiac two-pore-domain potassium (K2P) channels. Naunyn Schmiedeberg's Arch Pharmacol 385:1003–1016

    Article  CAS  Google Scholar 

  • Schmidt C, Wiedmann F, Voigt N, Zhou XB, Heijman J, Lang S, Albert V, Kallenberger S, Ruhparwar A, Szabo G, Kallenbach K, Karck M, Borggrefe M, Biliczki P, Ehrlich JR, Baczko I, Lugenbiel P, Schweizer PA, Donner BC, Katus HA, Dobrev D, Thomas D (2015) Upregulation of K2P3.1 K+ current causes action potential shortening in patients with chronic atrial fibrillation. Circulation 132:82–92

    Article  PubMed  CAS  Google Scholar 

  • Schmidt C, Wiedmann F, Zhou XB, Heijman J, Voigt N, Ratte A, Lang S, Kallenberger S, Campana C, Weymann A, De Simone R, Szabo G, Ruhparwar A, Kallenbach K, Karck M, Ehrlich JR, Baczkó I, Borggrefe M, Ravens U, Dobrev D, Katus HA, Thomas D (2017) Inverse remodeling of K2P3.1 K+ channel expression and action potential duration in left ventricular dysfunction and atrial fibrillation—implications for patient-specific antiarrhythmic drug therapy. Eur Heart J 38:1764–1774

    PubMed  Google Scholar 

  • Schotten U, Verheule S, Kirchhof P, Goette A (2011) Pathophysiological mechanisms of atrial fibrillation: a translational appraisal. Physiol Rev 91:265–325

    Article  PubMed  Google Scholar 

  • Seki A, Hagiwara N, Kasanuki H (1999) Effects of propafenone on K currents in human atrial myocytes. Br J Pharmacol 126:1153–1162

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Seyler C, Li J, Schweizer PA, Katus HA, Thomas D (2014a) Inhibition of cardiac two-pore-domain K+ (K2P) channels by the antiarrhythmic drug vernakalant – comparison with flecainide. Eur J Pharmacol 724:51–57

    Article  PubMed  CAS  Google Scholar 

  • Seyler C, Schweizer PA, Zitron E, Katus HA, Thomas D (2014b) Vernakalant activates human cardiac K2P17.1 background K+ channels. Biochem Biophys Res Commun 451:415–420

    Article  PubMed  CAS  Google Scholar 

  • Sheldon R, Duff H, Koshman ML (1995) Antiarrhythmic activity of quinine in humans. Circulation 92:2944–2950

    Article  PubMed  CAS  Google Scholar 

  • Slawsky MT, Castle NA (1994) K+ channel blocking actions of flecainide compared with those of propafenone and quinidine in adult rat ventricular myocytes. J Pharmacol Exp Ther 269:66–74

    PubMed  CAS  Google Scholar 

  • Soucek R, Thomas D, Kelemen K, Bikou O, Seyler C, Voss F, Becker R, Koenen M, Katus HA, Bauer A (2012) Genetic suppression of atrial fibrillation using a dominant-negative ether-a-go-go-related gene mutant. Heart Rhythm 9:265–272

    Article  PubMed  Google Scholar 

  • Staudacher K, Baldea I, Kisselbach J, Staudacher I, Rahm AK, Schweizer PA, Becker R, Katus HA, Thomas D (2011a) Alternative splicing determines mRNA translation initiation and function of human K2P10.1 K+ channels. J Physiol 589:3709–3720

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Staudacher K, Staudacher I, Ficker E, Seyler C, Gierten J, Kisselbach J, Rahm AK, Trappe K, Schweizer PA, Becker R, Katus HA, Thomas D (2011b) Carvedilol targets human K2P3.1 (TASK1) K+ leak channels. Br J Pharmacol 163:1099–1110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Supanaranond W, Davis TM, Pukrittayakamee S, Silamut K, Karbwang J, Molunto P, Chanond L, White NJ (1991) Disposition of oral quinine in acute falciparum malaria. Eur J Clin Pharmacol 40:49–52

    Article  PubMed  CAS  Google Scholar 

  • Tamura A, Ogura T, Uemura H, Reien Y, Kishimoto T, Nagai T, Komuro I, Miyazaki M, Nakaya H (2009) Effects of antiarrhythmic drugs on the hyperpolarization-activated cyclic nucleotide-gated channel current. J Pharmacol Sci 110:150–159

    Article  PubMed  CAS  Google Scholar 

  • Tanabe T, Yoshikawa H, Furuya H, Goto Y (1988) Therapeutic effectiveness and plasma levels of single or combination use of class I antiarrhythmic agents for ventricular arrhythmias. Jpn Circ J 52:298–305

    Article  PubMed  CAS  Google Scholar 

  • Thomas D, Plant LD, Wilkens CM, McCrossan ZA, Goldstein SAN (2008) Alternative translation initiation in rat brain yields K2P2.1 potassium channels permeable to sodium. Neuron 58:859–870

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tomaselli GF, Marbán E (1999) Electrophysiological remodeling in hypertrophy and heart failure. Cardiovasc Res 42:270–283

    Article  PubMed  CAS  Google Scholar 

  • Trappe K, Thomas D, Bikou O, Kelemen K, Lugenbiel P, Voss F, Becker R, Katus HA, Bauer A (2013) Suppression of persistent atrial fibrillation by genetic knockdown of caspase 3: a pre-clinical pilot study. Eur Heart J 34:147–157

    Article  PubMed  CAS  Google Scholar 

  • Volz M, Mitrovic V, Thiemer J, Schlepper M (1995) Steady-state plasma kinetics of slow-release propafenone, its two isomers and its main metabolites. Arzneimittelforschung 45:246–249

    PubMed  CAS  Google Scholar 

  • Waelbroeck M, Taton G, Delhaye M, Chatelain P, Camus JC, Pochet R, Leclerc JL, De Smet JM, Robberecht P, Christophe J (1983) The human heart beta-adrenergic receptors. II. Coupling of beta 2-adrenergic receptors with the adenylate cyclase system. Mol Pharmacol 24:174–182

    PubMed  CAS  Google Scholar 

  • Wang Z, Fermini B, Nattel S (1995) Effects of flecainide, quinidine, and 4-aminopyridine on transient outward and ultrarapid delayed rectifier currents in human atrial myocytes. J Pharmacol Exp Ther 272:184–196

    PubMed  CAS  Google Scholar 

  • Wanwimolruk S, Denton JR (1992) Plasma protein binding of quinine: binding to human serum albumin, alpha 1-acid glycoprotein and plasma from patients with malaria. J Pharm Pharmacol 44:806–811

    Article  PubMed  CAS  Google Scholar 

  • Watanabe Y, Hara Y, Tamagawa M, Nakaya H (1996) Inhibitory effect of amiodarone on the muscarinic acetylcholine receptor-operated potassium current in guinea pig atrial cells. J Pharmacol Exp Ther 279:617–624

    PubMed  CAS  Google Scholar 

  • Wettwer E, Christ T, Endig S, Rozmaritsa N, Matschke K, Lynch JJ, Pourrier M, Gibson JK, Fedida D, Knaut M, Ravens U (2013) The new antiarrhythmic drug vernakalant: ex vivo study of human atrial tissue from sinus rhythm and chronic atrial fibrillation. Cardiovasc Res 98:145–154

    Article  PubMed  CAS  Google Scholar 

  • Witchel HJ, Hancox JC, Nutt DJ (2003) Psychotropic drugs, cardiac arrhythmia, and sudden death. J Clin Psychopharmacol 23:58–77

    Article  PubMed  CAS  Google Scholar 

  • Yan M, Fan P, Shi Y, Feng L, Wang J, Zhan G, Li B (2016) Stereoselective blockage of quinidine and quinine in the hERG channel and the effect of their rescue potency on drug-induced hERG trafficking defect. Int J Mol Sci 17:1648

    Article  PubMed Central  CAS  Google Scholar 

  • Yang T, Snyders DJ, Roden DM (1997) Rapid inactivation determines the rectification and [K+]o dependence of the rapid component of the delayed rectifier K+ current in cardiac cells. Circ Res 80:782–789

    Article  PubMed  CAS  Google Scholar 

  • Yatani A, Akaike N (1985) Blockage of the sodium current in isolated single cells from rat ventricle with mexiletine and disopyramide. J Mol Cell Cardiol 17:467–476

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Zhou Z, Gong Q, Makielski JC, January CT (1999) Mechanism of block and identification of the verapamil binding domain to HERG potassium channels. Circ Res 84:989–998

    Article  PubMed  CAS  Google Scholar 

  • Zhang YH, Colenso CK, Sessions RB, Dempsey CE, Hancox JC (2011) The hERG K+ channel S4 domain L532P mutation: characterization at 37°C. Biochim Biophys Acta 1808:2477–2487

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank Simone Bauer, Christine Jeckel, Jennifer Kleist, Axel Schöffel, Kai Sona and Nadine Weiberg for excellent technical assistance. This work was supported in part by research grants from the University of Heidelberg, Faculty of Medicine (Physician Scientist Program to I.S. and to A.K.R.), from the German Cardiac Society (German Cardiac Society Scholarship to I.S. and to A.K.R., Otto Hess Scholarship to S.S.), from the German Heart Foundation/German Foundation of Heart Research (Kaltenbach Scholarship to D.G., project F/08/14 to D.T.), from the Else Kröner-Fresenius-Stiftung (2014_A242 to D.T.), from the Joachim Siebeneicher Foundation (to D.T.), from the Deutsche Forschungsgemeinschaft (German Research Foundation; SCHW 1611/1-1 to P.A.S., TH 1120/8-1 to D.T.), and from the Ministry of Science, Research and the Arts Baden-Wuerttemberg (Sonderlinie Medizin to D.T.). C.I. and T.W. were supported by the Cardiology Career Program of the Department of Cardiology, University of Heidelberg. P.A.S was supported by the Heidelberg Research Centre for Molecular Medicine (Senior Career Fellowship). Additionally, portions of this work were supported by NIH/NHLBI 1R01HL124245 (to I.D.) and an American Heart Association Pre-Doctoral Fellowship from the Great Rivers Affiliate 15PRE25700037 (to S.C.).

Author contribution statement

IS, CI, ID, AKR and DT conceived and designed research. IS, CI, SC, ID, SS, DG, MEM, TW and AKR conducted experiments. CM contributed new analytical tools. IS, CI, SC, ID, DG, MEM, TW, AKR, PAS, HAK and DT analyzed data and participated in data interpretation. IS, CI, DG, MEM, TW, AKR and DT wrote the manuscript. IS, CI, SC, ID, SS, DG, MEM, TW, AKR, PAS, HAK and DT critically revised the manuscript for important intellectual content. All authors read and approved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dierk Thomas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics statement

This study has been carried out in accordance with the Guide for the Care and Use of Laboratory Animals as adopted and promulgated by the US National Institutes of Health (NIH publication no. 85-23, revised 1985), and the current version of the German Law on the Protection of Animals was followed. The investigation conforms to the Directive 2010/63/EU of the European Parliament. The study protocol involving human tissue samples was approved by the ethics committee of the University of Heidelberg (Germany; Medical Faculty Heidelberg, S-017/2013). Written informed consent was obtained from all patients, and the study was conducted in accordance with the Declaration of Helsinki. Approval for experiments involving Xenopus laevis was granted by the local Animal Welfare Committee (institutional approval numbers A-38/11 and G-221/12).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Staudacher, I., Illg, C., Chai, S. et al. Cardiovascular pharmacology of K2P17.1 (TASK-4, TALK-2) two-pore-domain K+ channels. Naunyn-Schmiedeberg's Arch Pharmacol 391, 1119–1131 (2018). https://doi.org/10.1007/s00210-018-1535-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-018-1535-z

Keywords

Navigation