Skip to main content

Advertisement

Log in

Nephroprotective efficacy of ceftriaxone against cisplatin-induced subchronic renal fibrosis in rats

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Cisplatin, or cis-diamminedichloridoplatinum(II), (CDDP) is a broad-spectrum antineoplastic chemotherapeutic agent with a potent efficacy against several malignancies. Its main clinical antineoplastic therapy-limiting adverse effect is nephrotoxicity, where the developments of effective nephroprotectors are needed. Therefore, the present study aimed to investigate the nephroprotective and antifibrotic potential of ceftriaxone (CTX) against CDDP-induced toxicity. Male Wister rats were treated with saline or CTX (100 or 200 mg kg−1 bw) an hour before CDDP administration (1 mg kg−1 bw). All the treatments were intraperitoneally administered twice weekly for consecutive 10 weeks. Twenty-four hours after last CDDP dose, blood samples were collected, then the animals were euthanized and their kidneys were isolated for measurements. CDDP significantly increased serum uric acid, urea, and creatinine contents. Toxicopathic changes showed that CDDP induced marked tubulointerstitial damage, overexpressed fibrogenic factors α-smooth muscle actin (α-SMA) and transforming growth factor-β1 (TGF-β1), and down expressed cellular proliferating biomarker bromodeoxyuridine (BrdU). CTX pretreatment, particularly 200 mg/kg bw, improved the renal function biomarkers; histoarchitecture; and α-SMA, TGF-β1, and BrdU expressions. It could be concluded that CTX is endowed with antifibrotic properties and could be, therefore, used as adjuvant therapy to improve CDDP-induced nephrotoxicity. Further clinical researches are necessary to evaluate whether CTX may exhibit a new therapeutic choice for treating renal fibrotic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdel-Daim MM (2016) Synergistic protective role of ceftriaxone and ascorbic acid against subacute diazinon-induced nephrotoxicity in rats. Cytotechnology 68:279–289

    Article  CAS  PubMed  Google Scholar 

  • Abdel-Daim MM, Abuzead SM, Halawa SM (2013) Protective role of Spirulina platensis against acute deltamethrin-induced toxicity in rats. PLoS One 8:e72991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abdel-Daim MM, El-Ghoneimy A (2015) Synergistic protective effects of ceftriaxone and ascorbic acid against subacute deltamethrin-induced nephrotoxicity in rats. Ren Fail 37:297–304

    Article  CAS  PubMed  Google Scholar 

  • Abdou RH, Abdel-Daim MM (2014) Alpha-lipoic acid improves acute deltamethrin-induced toxicity in rats. Can J Physiol Pharmacol 92:773–779

    Article  CAS  PubMed  Google Scholar 

  • Adachi T, Arito M, Suematsu N, Kamijo-Ikemori A, Omoteyama K, Sato T, Kurokawa MS, Okamoto K, Kimura K, Shibagaki Y, Kato T (2015) Roles of layilin in TNF-alpha-induced epithelial-mesenchymal transformation of renal tubular epithelial cells. Biochem Biophys Res Commun 467:63–69

    Article  CAS  PubMed  Google Scholar 

  • Al-Sayed E, Abdel-Daim MM (2014) Protective role of Cupressuflavone from Cupressus macrocarpa against carbon tetrachloride-induced hepato- and nephrotoxicity in mice. Planta Med 80:1665–1671

    Article  CAS  PubMed  Google Scholar 

  • Ali BH, Al Moundhri MS (2006) Agents ameliorating or augmenting the nephrotoxicity of cisplatin and other platinum compounds: a review of some recent research. Food Chem Toxicol 44:1173–1183

    Article  CAS  PubMed  Google Scholar 

  • Amin B, Hajhashemi V, Abnous K, Hosseinzadeh H (2014) Ceftriaxone, a beta-lactam antibiotic, modulates apoptosis pathways and oxidative stress in a rat model of neuropathic pain. Biomed Res Int 2014:937568

    PubMed  PubMed Central  Google Scholar 

  • An HJ, Kim JY, Kim WH, Han SM, Park KK (2016) The protective effect of melittin on renal fibrosis in an animal model of unilateral ureteral obstruction. Molecules 21

  • Beauchamp D, Theriault G, Grenier L, Gourde P, Perron S, Bergeron Y, Fontaine L, Bergeron MG (1994) Ceftriaxone protects against tobramycin nephrotoxicity. Antimicrob Agents Chemother 38:750–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boukhalfa G, Desmouliere A, Rondeau E, Gabbiani G, Sraer JD (1996) Relationship between alpha-smooth muscle actin expression and fibrotic changes in human kidney. Exp Nephrol 4:241–247

    CAS  PubMed  Google Scholar 

  • Cui C, Cui Y, Gao J, Sun L, Wang Y, Wang K, Li R, Tian Y, Song S, Cui J (2014) Neuroprotective effect of ceftriaxone in a rat model of traumatic brain injury. Neurol Sci 35:695–700

    Article  PubMed  Google Scholar 

  • Deck DH, Winston LG (2015) Chemotherapeutic drugs: Beta-lactam and other cell wall- and membrane-active antibiotics. In: Katzung B, Trevor A (eds) Basic and clinical pharmacology, 12th edn. McGraw-Hill, New York, USA pp 769–787

  • Dehghani A, Saberi S, Nematbakhsh M (2016) Cisplatin-induced nephrotoxicity alters blood pressure response to angiotensin II administration in rats. Adv Biomed Res 5:53

    Article  PubMed  PubMed Central  Google Scholar 

  • Ding Y, Kim S, Lee SY, Koo JK, Wang Z, Choi ME (2014) Autophagy regulates TGF-beta expression and suppresses kidney fibrosis induced by unilateral ureteral obstruction. J Am Soc Nephrol 25:2835–2846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dwivedi VK, Bhatanagar A, Chaudhary M (2012) Protective role of ceftriaxone plus sulbactam with VRP1034 on oxidative stress, hematological and enzymatic parameters in cadmium toxicity induced rat model. Interdiscip Toxicol 5:192–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eldahshan OA, Abdel-Daim MM (2015) Phytochemical study, cytotoxic, analgesic, antipyretic and anti-inflammatory activities of Strychnos nux-vomica. Cytotechnology 67:831–844

    Article  CAS  PubMed  Google Scholar 

  • Gentry EJ (2013) Chemotherapeutic agents: antibiotics and antimicrobial agents. In: Lemke HL, Williams DA, Roche VF, Zito SW (eds) Foye’s principles of medicinal chemistry, 7th ed. Lippincott Williams & Wilkins, West Camden Street, Baltimore, MD 21201, pp. 1093–1094

    Google Scholar 

  • Gunduz O, Oltulu C, Buldum D, Guven R, Ulugol A (2011) Anti-allodynic and anti-hyperalgesic effects of ceftriaxone in streptozocin-induced diabetic rats. Neurosci Lett 491:23–25

    Article  CAS  PubMed  Google Scholar 

  • Habibi-Asl B, Vaez H, Najafi M, Bidaghi A, Ghanbarzadeh S (2014) Attenuation of morphine-induced dependence and tolerance by ceftriaxone and amitriptyline in mice. Acta Anaesthesiol Taiwanica 52:163–168

    Article  Google Scholar 

  • Hajhashemi V, Hosseinzadeh H, Amin B (2013) Antiallodynia and antihyperalgesia effects of ceftriaxone in treatment of chronic neuropathic pain in rats. Acta Neuropsychiatr 25:27–32

    Article  PubMed  Google Scholar 

  • Hassan HA, Edrees GM, El-Gamel EM, El-Sayed EA (2014) Amelioration of cisplatin-induced nephrotoxicity by grape seed extract and fish oil is mediated by lowering oxidative stress and DNA damage. Cytotechnology 66:419–429

    Article  CAS  PubMed  Google Scholar 

  • Hussein AM, Ghalwash M, Magdy K, Abulseoud OA (2016) Beta lactams antibiotic ceftriaxone modulates seizures, oxidative stress and Connexin 43 expression in hippocampus of pentylenetetrazole kindled rats. J Epilepsy Res 6:8–15

    Article  PubMed  PubMed Central  Google Scholar 

  • Ikarashi Y, Kakihara T, Imai C, Tanaka A, Watanabe A, Uchiyama M (2004) Glomerular dysfunction, independent of tubular dysfunction, induced by antineoplastic chemotherapy in children. Pediatr Int 46:570–575

    Article  CAS  PubMed  Google Scholar 

  • Inui T, Alessandri B, Heimann A, Nishimura F, Frauenknecht K, Sommer C, Kempski O (2013) Neuroprotective effect of ceftriaxone on the penumbra in a rat venous ischemia model. Neuroscience 242:1–10

    Article  CAS  PubMed  Google Scholar 

  • Jiang M, Dong Z (2008) Regulation and pathological role of p53 in cisplatin nephrotoxicity. J Pharmacol Exp Ther 327:300–307

    Article  CAS  PubMed  Google Scholar 

  • Karasawa T, Steyger PS (2015) An integrated view of cisplatin-induced nephrotoxicity and ototoxicity. Toxicol Lett 237:219–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kintzel PE (2001) Anticancer drug-induced kidney disorders. Drug Saf 24:19–38

    Article  CAS  PubMed  Google Scholar 

  • Kojima T, Morita Y (2012) Cisplatin: pharmacology, clinical uses and adverse effects. Nova Science Publishers, Inc., New York

    Google Scholar 

  • Kuhlmann MK, Burkhardt G, Köhler H (1997) Insights into potential cellular mechanisms of cisplatin nephrotoxicity and their clinical application. Nephrol Dial Transplant 12:2478–2480

    Article  CAS  PubMed  Google Scholar 

  • Lapenna D, Cellini L, De Gioia S, Mezzetti A, Ciofani G, Festi D, Cuccurullo F (1995) Cephalosporins are scavengers of hypochlorous acid. Biochem Pharmacol 49:1249–1254

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Cao F, Tang QZ, Yan L, Dong YG, Zhu LH, Wang L, Bian ZY, Li H (2010) Allicin protects against cardiac hypertrophy and fibrosis via attenuating reactive oxygen species-dependent signaling pathways. J Nutr Biochem 21:1238–1250

    Article  CAS  PubMed  Google Scholar 

  • Marcussen N (1990) Atubular glomeruli in cisplatin-induced chronic interstitial nephropathy. An experimental stereological investigation. APMIS 98:1087–1097

    Article  CAS  PubMed  Google Scholar 

  • Mediavilla-Varela M, Boateng K, Noyes D, Antonia SJ (2016) The anti-fibrotic agent pirfenidone synergizes with cisplatin in killing tumor cells and cancer-associated fibroblasts. BMC Cancer 16:176

    Article  PubMed  PubMed Central  Google Scholar 

  • Medrano MC, Mendiguren A, Pineda J (2015) Effect of ceftriaxone and topiramate treatments on naltrexone-precipitated morphine withdrawal and glutamate receptor desensitization in the rat locus coeruleus. Psychopharmacology 232:2795–2809

    Article  CAS  PubMed  Google Scholar 

  • Miller RP, Tadagavadi RK, Ramesh G, Reeves WB (2010) Mechanisms of cisplatin nephrotoxicity. Toxins (Basel) 2:2490–2518

    Article  CAS  Google Scholar 

  • Peres LA, da Cunha AD Jr (2013) Acute nephrotoxicity of cisplatin: molecular mechanisms. J Bras Nefrol 35:332–340

    Article  PubMed  Google Scholar 

  • Pottabathini R, Kumar A, Bhatnagar A, Garg S, Ekavali E (2016) Ameliorative potential of pioglitazone and ceftriaxone alone and in combination in rat model of neuropathic pain: targeting PPARgamma and GLT-1 pathways. Pharmacol Rep 68:85–94

    Article  CAS  PubMed  Google Scholar 

  • Razzaque MS, Kumatori A, Harada T, Taguchi T (1998) Coexpression of collagens and collagen-binding heat shock protein 47 in human diabetic nephropathy and IgA nephropathy. Nephron 80:434–443

    Article  CAS  PubMed  Google Scholar 

  • Razzaque MS, Taguchi T (2002) Cellular and molecular events leading to renal tubulointerstitial fibrosis. Med Electron Microsc 35:68–80

    Article  CAS  PubMed  Google Scholar 

  • Rumbaugh JA, Li G, Rothstein J, Nath A (2007) Ceftriaxone protects against the neurotoxicity of human immunodeficiency virus proteins. J Neurovirol 13:168–172

    Article  CAS  PubMed  Google Scholar 

  • Stepanovic-Petrovic RM, Micov AM, Tomic MA, Kovacevic JM, Boskovic BD (2014) Antihyperalgesic/antinociceptive effects of ceftriaxone and its synergistic interactions with different analgesics in inflammatory pain in rodents. Anesthesiology 120:737–750

    Article  CAS  PubMed  Google Scholar 

  • Taguchi T, Nazneen A, Abid MR, Razzaque MS (2005) Cisplatin-associated nephrotoxicity and pathological events. Contrib Nephrol 148:107–121

    Article  CAS  PubMed  Google Scholar 

  • Taupin P (2007) BrdU immunohistochemistry for studying adult neurogenesis: paradigms, pitfalls, limitations, and validation. Brain Res Rev 53:198–214

    Article  CAS  PubMed  Google Scholar 

  • Tsang RY, Al-Fayea T, Au HJ (2009) Cisplatin overdose: toxicities and management. Drug Saf 32:1109–1122

    Article  CAS  PubMed  Google Scholar 

  • Weng JC, Tikhonova MA, Chen JH, Shen MS, Meng WY, Chang YT, Chen KH, Liang KC, Hung CS, Amstislavskaya TG, Ho YJ (2016) Ceftriaxone prevents the neurodegeneration and decreased neurogenesis seen in a Parkinson’s disease rat model: an immunohistochemical and MRI study. Behav Brain Res 305:126–139

    Article  CAS  PubMed  Google Scholar 

  • Yamate J, Machida Y, Ide M, Kuwamura M, Kotani T, Sawamoto O, LaMarre J (2005) Cisplatin-induced renal interstitial fibrosis in neonatal rats, developing as solitary nephron unit lesions. Toxicol Pathol 33:207–217

    Article  CAS  PubMed  Google Scholar 

  • Yamate J, Machida Y, Ide M, Kuwamura M, Sawamoto O, LaMarre J (2004) Effects of lipopolysaccharide on the appearance of macrophage populations and fibrogenesis in cisplatin-induced rat renal injury. Exp Toxicol Pathol 56:13–24

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Liu H, Liu F, Dong Z (2014) Mitochondrial dysregulation and protection in cisplatin nephrotoxicity. Arch Toxicol 88:1249–1256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Z, Schumaker LM, Egorin MJ, Zuhowski EG, Guo Z, Cullen KJ (2006) Cisplatin preferentially binds mitochondrial DNA and voltage-dependent anion channel protein in the mitochondrial membrane of head and neck squamous cell carcinoma: possible role in apoptosis. Clin Cancer Res 12:5817–5825

    Article  CAS  PubMed  Google Scholar 

  • Yilmaz N, Ilhan S, Naziroglu M, Oktar S, Nacar A, Arica V, Tutanc M (2011) Ceftriaxone ameliorates cyclosporine A-induced oxidative nephrotoxicity in rat. Cell Biochem Funct 29:102–107

    Article  CAS  PubMed  Google Scholar 

  • Yoshiyama Y, Yazaki T, Beauchamp D, Kanke M (1998) Protective effect of ceftriaxone against the nephrotoxicity of isepamicin administered once daily in rats. Biol Pharm Bull 21:520–523

    Article  CAS  PubMed  Google Scholar 

  • Zumkehr J, Rodriguez-Ortiz CJ, Cheng D, Kieu Z, Wai T, Hawkins C, Kilian J, Lim SL, Medeiros R, Kitazawa M (2015) Ceftriaxone ameliorates tau pathology and cognitive decline via restoration of glial glutamate transporter in a mouse model of Alzheimer’s disease. Neurobiol Aging 36:2260–2271

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research work received no fund from any organization. The authors would like to thank Sandoz-Novartis, Egypt, for supplying the ceftriaxone used in our experiment. The company had neither role in designing the experiment nor in the publication process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed M. Abdel-Daim.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel-Daim, M.M., El-Sayed, Y.S., Eldaim, M.A. et al. Nephroprotective efficacy of ceftriaxone against cisplatin-induced subchronic renal fibrosis in rats. Naunyn-Schmiedeberg's Arch Pharmacol 390, 301–309 (2017). https://doi.org/10.1007/s00210-016-1332-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-016-1332-5

Keywords

Navigation