Skip to main content

Advertisement

Log in

The role of oxidative stress in anticancer activity of sesquiterpene lactones

  • Review
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Sesquiterpene lactones (SLs) are plant-derived compounds that are abundant in plants of the Asteraceae family and posses a broad spectrum of biological activities, ranging from anti-inflammatory, phytotoxic, antibacterial, and antifungal to cytotoxic/anticancer. In recent years, anticancer properties of these compounds and molecular mechanisms of their action have been studied extensively on numerous cell lines and also on experimental animals. SLs have been shown to disrupt cellular redox balance and induce oxidative stress in cancer cells. Oxidative stress is associated with increased production of reactive oxygen species (ROS) which in turn can promote many aspects of cancer development and progression. On the other hand, ROS, which initiate apoptosis via the mitochondrial-dependent pathway, can also be used to kill cancer cells, if they can be generated in cancer. One of the most important regulators of the redox equilibrium in the cells is reduced glutathione (GSH). In cancer cells, GSH levels are higher than in normal cells. Therefore, SL can induce apoptosis of cancer cells by decreasing intracellular GSH levels. The use of SL which can affect intracellular redox signaling pathways can be considered an interesting approach for cancer treatment. In this review, we give a brief description of the mechanisms and pathways involved in oxidative stress-induced anticancer activity of SL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Beekman AC, Woerdenbag HJ, van Uden W, Pras N, Konings AW, Wikström HV, Schmidt TJ (1997) Structure-cytotoxicity relationships of some helenanolide-type sesquiterpene lactones. J Nat Prod 60:252–257

    Article  CAS  PubMed  Google Scholar 

  • Berges C, Fuchs D, Opelz G, Daniel V, Naujokat C (2009) Helenalin suppresses essential immune functions of activated CD4+ T cells by multiple mechanisms. Mol Immunol 46:2892–2901

    Article  CAS  PubMed  Google Scholar 

  • Betteridge DJ (2000) What is oxidative stress? Metabolism 49(2 Suppl 1):3–8

    Article  CAS  PubMed  Google Scholar 

  • Chadwick M, Trewin H, Gawthrop F, Wagstaff C (2013) Sesquiterpenoids lactones: benefits to plants and people. Int J Mol Sci 14:12780–12805

    Article  PubMed Central  PubMed  Google Scholar 

  • Chaiswing L, Oberley TD (2010) Extracellular/microenvironmental redox state. Antioxid Redox Signal 13:449–465

    Article  CAS  PubMed  Google Scholar 

  • Choi JH, Lee KT (2009) Costunolide-induced apoptosis in human leukemia cells: involvement of c-jun N-terminal kinase activation. Biol Pharm Bull 32:1803–1808

    Article  CAS  PubMed  Google Scholar 

  • Circu ML, Aw TY (2008) Glutathione and apoptosis. Free Radic Res 42:689–706

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Circu ML, Aw TY (2010) Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 48:749–762

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • D’Anneo A, Carlisi D, Lauricella M, Puleio R, Martinez R, Di Bella S, Di Marco P, Emanuele S, Di Fiore R, Guercio A, Vento R, Tesoriere G (2013) Parthenolide generates reactive oxygen species and autophagy in MDA-MB231 cells. A soluble parthenolide analogue inhibits tumour growth and metastasis in a xenograft model of breast cancer. Cell Death Dis 4:e891

    Article  PubMed Central  PubMed  Google Scholar 

  • Diamanti P, Cox CV, Moppett JP, Blair A (2013) Parthenolide eliminates leukemia-initiating cell populations and improves survival in xenografts of childhood acute lymphoblastic leukemia. Blood 121:1384–1393

    Article  CAS  PubMed  Google Scholar 

  • Fang J, Seki T, Maeda H (2009) Therapeutic strategies by modulating oxygen stress in cancer and inflammation. Adv Drug Deliv Rev 61:290–302

    Article  CAS  PubMed  Google Scholar 

  • Fonrose X, Ausseil F, Soleilhac E, Masson V, David B, Pouny I, Cintrat JC, Rousseau B, Barette C, Massiot G, Lafanechère L (2007) Parthenolide inhibits tubulin carboxypeptidase activity. Cancer Res 67:3371–3378

    Article  CAS  PubMed  Google Scholar 

  • Friesen C, Kiess Y, Debatin KM (2004) A critical role of glutathione in determining apoptosis sensitivity and resistance in leukemia cells. Cell Death Differ 11(Suppl 1):S73–S85

    Article  CAS  PubMed  Google Scholar 

  • Fujioka S, Sclabas GM, Schmidt C, Frederick WA, Dong QG, Abbruzzese JL, Evans DB, Baker C, Chiao PJ (2003) Function of nuclear factor kappaB in pancreatic cancer metastasis. Clin Cancer Res 9:346–354

    CAS  PubMed  Google Scholar 

  • Gelderman KA, Hultqvist M, Holmberg J, Olofsson P, Holmdahl R (2006) T cell surface redox levels determine T cell reactivity and arthritis susceptibility. Proc Natl Acad Sci U S A 103:12831–12836

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gopal YN, Arora TS, Van Dyke MW (2007) Parthenolide specifically depletes histone deacetylase 1 protein and induces cell death through ataxia telangiectasia mutated. Chem Biol 14:813–823

    Article  CAS  PubMed  Google Scholar 

  • Guzman ML, Neering SJ, Upchurch D, Grimes B, Howard DS, Rizzieri DA, Luger SM, Jordan CT (2001) Nuclear factor-kappaB is constitutively activated in primitive human acute myelogenous leukemia cells. Blood 98:2301–2307

    Article  CAS  PubMed  Google Scholar 

  • Guzman ML, Rossi RM, Karnischky L, Li X, Peterson DR, Howard DS, Jordan CT (2005) The sesquiterpene lactone parthenolide induces apoptosis of human acute myelogenous leukemia stem and progenitor cells. Blood 105:4163–4169

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guzman ML, Rossi RM, Neelakantan S, Li X, Corbett CA, Hassane DC, Becker MW, Bennett JM, Sullivan E, Lachowicz JL, Vaughan A, Sweeney CJ, Matthews W, Carroll M, Liesveld JL, Crooks PA, Jordan CT (2007) An orally bioavailable parthenolide analog selectively eradicates acute myelogenous leukemia stem and progenitor cells. Blood 110:4427–4435

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Halliwell B, Cross CE (1994) Oxygen-derived species: their relation to human disease and environmental stress. Environ Health Perspect 102(Suppl 10):5–12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hayashi S, Koshiba K, Hatashita M, Sato T, JujoY SR, Tanaka Y, Shioura H (2011) Thermosensitization and induction of apoptosis or cell-cycle arrest via the MAPK cascade by parthenolide, an NF-κB inhibitor, in human prostate cancer androgen-independent cell lines. Int J Mol Med 28:1033–1042

    CAS  PubMed  Google Scholar 

  • Heilmann J, Wasescha MR, Schmidt TJ (2001) The influence of glutathione and cysteine levels on the cytotoxicity of helenanolide type sesquiterpene lactones against KB cells. Bioorg Med Chem 9:2189–2194

    Article  CAS  PubMed  Google Scholar 

  • Irshad M, Chaudhuri PS (2002) Oxidant-antioxidant system: role and significance in human body. Indian J Exp Biol 40:1233–1239

    CAS  PubMed  Google Scholar 

  • Itoh T, Ito Y, Ohguchi K, Ohyama M, Iinuma M, Otsuki M, Nozawa Y, Akao Y (2008) Eupalinin A isolated from Eupatorium chinense L. induces autophagocytosis in human leukemia HL60 cells. Bioorg Med Chem 16:721–731

    Article  CAS  PubMed  Google Scholar 

  • Itoh T, Ohguchi K, Nozawa Y, Akao Y (2009) Intracellular glutathione regulates sesquiterpene lactone-induced conversion of autophagy to apoptosis in human leukemia HL60 cells. Anticancer Res 29:1449–1457

    CAS  PubMed  Google Scholar 

  • Janecka A, Wyrębska A, Gach K, Fichna J, Janecki T (2012) Natural and synthetic α-methylenelactones and α-methylenelactams with anticancer potential. Drug Discov Today 17:561–572

    Article  CAS  PubMed  Google Scholar 

  • Karin M, Lin A (2002) NF-kappaB at the crossroads of life and death. Nat Immunol 3:221–227

    Article  CAS  PubMed  Google Scholar 

  • Kevin P (2010) New agents for the treatment of leukemia: discovery of DMAPT (LC-1). Drug Discov Today 15:322

    Article  Google Scholar 

  • Khan M, Yi F, Rasul A, Li T, Wang N, Gao H, Gao R, Ma T (2012) Alantolactone induces apoptosis in glioblastoma cells via GSH depletion, ROS generation, and mitochondrial dysfunction. IUBMB Life 64:783–794

    Article  CAS  PubMed  Google Scholar 

  • Khan M, Li T, Ahmad Khan MK, Rasul A, Nawaz F, Sun M, Zheng Y, Ma T (2013) Alantolactone induces apoptosis in HepG2 cells through GSH depletion, inhibition of STAT3 activation, and mitochondrial dysfunction. Biomed Res Int 2013:719858

    PubMed Central  PubMed  Google Scholar 

  • Knight DW (1995) Feverfew: chemistry and biological activity. Nat Prod Rep 12:271–276

    Article  CAS  PubMed  Google Scholar 

  • Koprowska K, Czyz M (2010) Molecular mechanisms of parthenolide’s action: old drug with a new face. Postepy Hig Med Dosw (Online) 64:100–114

    Google Scholar 

  • Kreuger MR, Grootjans S, Biavatti MW, Vandenabeele P, D’Herde K (2012) Sesquiterpene lactones as drugs with multiple targets in cancer treatment: focus on parthenolide. Anticancer Drugs 23:883–896

    PubMed  Google Scholar 

  • Lee KH, Furukawa H (1972) Antitumor agents. 3. Synthesis and cytotoxic activity of helenalin amine adducts and related derivatives. J Med Chem 15:609–611

    Article  CAS  PubMed  Google Scholar 

  • Lee KH, Hall IH, Mar EC, Starnes CO, ElGebaly SA, Waddell TG, Hadgraft RI, Ruffner CG, Weidner I (1977) Sesquiterpene antitumor agents: inhibitors of cellular metabolism. Science 196:533–536

    Article  CAS  PubMed  Google Scholar 

  • Lee MG, Lee KT, Chi SG, Park JH (2001) Costunolide induces apoptosis by ROS-mediated mitochondrial permeability transition and cytochrome C release. Biol Pharm Bull 24:303–306

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Liu S, Xie Z, Pavlovicz RE, Wu J, Chen P, Aimiuwu J, Pang J, Bhasin D, Neviani P, Fuchs JR, Plass C, Li PK, Li C, Huang TH, Wu LC, Rush L, Wang H, Perrotti D, Marcucci G, Chan KK (2009) Modulation of DNA methylation by a sesquiterpene lactone parthenolide. J Pharmacol Exp Ther 329:505–514

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu JW, Cai MX, Xin Y, Wu QS, Ma J, Yang P, Xie HY, Huang DS (2010) Parthenolide induces proliferation inhibition and apoptosis of pancreatic cancer cells in vitro. J Exp Clin Cancer Res 29:108

    Article  PubMed Central  PubMed  Google Scholar 

  • Mathema VB, Koh YS, Thakuri BC, Sillanpää M (2012) Parthenolide, a sesquiterpene lactone, expresses multiple anti-cancer and anti-inflammatory activities. Inflammation 35:560–565

    Article  CAS  PubMed  Google Scholar 

  • Mazor RL, Menendez IY, Ryan MA, Fiedler MA, Wong HR (2000) Sesquiterpene lactones are potent inhibitors of interleukin 8 gene expression in cultured human respiratory epithelium. Cytokine 12:239–245

    Article  CAS  PubMed  Google Scholar 

  • Merfort I (2011) Perspectives on sesquiterpene lactones in inflammation and cancer. Curr Drug Targets 12:1560–1573

    Article  CAS  PubMed  Google Scholar 

  • Montagut C, Tusquets I, Ferrer B, Corominas JM, Bellosillo B, Campas C, Suarez M, Fabregat X, Campo E, Gascon P, Serrano S, Fernandez L, Rovira A, Albanell J (2006) Activation of nuclear factor-κB is linked to resistance to neoadjuvant chemotherapy in breast cancer patients. Endocr Relat Cancer 13:607–616

    Article  CAS  PubMed  Google Scholar 

  • Nakshatri H, Rice SE, Bhat-Nakshatri P (2004) Antitumor agent parthenolide reverses resistance of breast cancer cells to tumour necrosis factor-related apoptosis-inducing ligand through sustained activation of c-Jun N-terminal kinase. Oncogene 23:7330–7344

    Article  CAS  PubMed  Google Scholar 

  • Nasim S, Crooks PA (2008) Antileukemic activity of aminoparthenolide analogs. Bioorg Med Chem Lett 18:3870–3873

    Article  CAS  PubMed  Google Scholar 

  • Neelakantan S, Nasim S, Guzman ML, Jordan CT, Crooks PA (2009) Aminoparthenolides as novel anti-leukemic agents: discovery of the NF-kappaB inhibitor, DMAPT (LC-1). Bioorg Med Chem Lett 19:4346–4349

    Article  CAS  PubMed  Google Scholar 

  • Nogueira V, Hay N (2013) Molecular pathways: reactive oxygen species homeostasis in cancer cells and implications for cancer therapy. Clin Cancer Res 19:4309–4314

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pati HN, Das U, Sharma RK, Dimmock JR (2007) Cytotoxic thiol alkylators. Mini Rev Med Chem 7:131–139

    Article  CAS  PubMed  Google Scholar 

  • Rasul A, Bao R, Malhi M, Zhao B, Tsuji I, Li J, Li X (2013) Induction of apoptosis by costunolide in bladder cancer cells is mediated through ROS generation and mitochondrial dysfunction. Molecules 18:1418–1433

    Article  CAS  PubMed  Google Scholar 

  • Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB (2010) Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med 49:1603–1616

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rüngeler P, Castro V, Mora G, Gören N, Vichnewski W, Pahl HL, Merfort I, Schmidt TJ (1999) Inhibition of transcription factor NF-kappaB by sesquiterpene lactones: a proposed molecular mechanism of action. Bioorg Med Chem 7:2343–2352

    Article  PubMed  Google Scholar 

  • Salla M, Fakhoury I, Saliba N, Darwiche N, Gali-Muhtasib H (2013) Synergistic anticancer activities of the plant-derived sesquiterpene lactones salograviolide A and iso-seco-tanapartholide. J Nat Med 67:468–479

    Article  CAS  PubMed  Google Scholar 

  • Schomburg C, Schuehly W, da Costa FB, Klempnauer K-H, Schmidt TJ (2013) Natural sesquiterpene Lactones as inhibitors of Myb-dependent gene expression: structure-activity relationships. Eur J Med Chem 63:313–320

    Article  CAS  PubMed  Google Scholar 

  • Schumacker PT (2006) Reactive oxygen species in cancer cells: live by the sword, die by the sword. Cancer Cell 10:175–176

    Article  CAS  PubMed  Google Scholar 

  • Scotti MT, Fernandes MB, Ferreira MJ, Emerenciano VP (2007) Quantitative structure-activity relationship of sesquiterpene lactones with cytotoxic activity. Bioorg Med Chem 15:2927–2934

    Article  CAS  PubMed  Google Scholar 

  • Shanmugam R, Kusumanchi P, Cheng L, Crooks P, Neelakantan S, Matthews W, Nakshatri H, Sweeney CJ (2010) A water-soluble parthenolide analogue suppresses in vivo prostate cancer growth by targeting NFkappaB and generating reactive oxygen species. Prostate 70:1074–1086

    Article  CAS  PubMed  Google Scholar 

  • Shanmugam R, Kusumanchi P, Appaiah H, Cheng L, Crooks P, Neelakantan S, Peat T, Klaunig J, Matthews W, Nakshatri H, Sweeney CJ (2011) A water soluble parthenolide analog suppresses in vivo tumor growth of two tobacco-associated cancers, lung and bladder cancer, by targeting NF-κB and generating reactive oxygen species. Int J Cancer 128:2481–2494

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sharma V, Joseph C, Ghosh S, Agarwal A, Mishra MK, Sen E (2007) Kaempferol induces apoptosis in glioblastoma cells through oxidative stress. Mol Cancer Ther 6:2544–2553

    Article  CAS  PubMed  Google Scholar 

  • Skalska J, Brookes PS, Nadtochiy SM, Hilchey SP, Jordan CT, Guzman ML, Maggirwar SB, Brieh MM, Bernstein SH (2009) Modulation of cell surface protein free thiols: a potential novel mechanism of action of the sesquiterpene lactone parthenolide. PLoS One 4:e8115

    Article  PubMed Central  PubMed  Google Scholar 

  • Song JM, Qian X, Upadhyayya P, Hong KH, Kassie F (2014) Dimethylaminoparthenolide, a water soluble parthenolide, suppresses lung tumorigenesis through down-regulating the STAT3 signaling pathway. Curr Cancer Drug Targets 14:59–69

    Article  PubMed  Google Scholar 

  • Steele AJ, Jones DT, Ganeshaguru K, Duke VM, Yogashangary BC, North JM, Lowdell MW, Kottaridis PD, Mehta AB, Prentice AG, Hoffbrand AV, Wickremasinghe RG (2006) The sesquiterpene lactone parthenolide induces selective apoptosis of B-chronic lymphocytic leukemia cells in vitro. Leukemia 20:1073–1079

    Article  CAS  PubMed  Google Scholar 

  • Suvannasankha A, Crean CD, Shanmugam R, Farag SS, Abonour R, Boswell HS, Nakshatri H (2008) Antimyeloma effects of a sesquiterpene lactone parthenolide. Clin Cancer Res 14:1814–1822

    Article  CAS  PubMed  Google Scholar 

  • Szatrowski TP, Nathan CF (1991) Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res 51:794–798

    CAS  PubMed  Google Scholar 

  • Toyokuni S, Okamoto K, Yodoi J, Hiai H (1995) Persistent oxidative stress in cancer. FEBS Lett 358:1–3

    Article  CAS  PubMed  Google Scholar 

  • Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84

    Article  CAS  PubMed  Google Scholar 

  • Visconti R, Grieco D (2009) New insights on oxidative stress in cancer. Curr Opin Drug Discov Dev 12:240–245

    CAS  Google Scholar 

  • Wang W, Adachi M, Kawamura R, Sakamoto H, Hayashi T, Ishida T, Imai K, Shinomura Y (2006) Parthenolide-induced apoptosis in multiple myeloma cells involves reactive oxygen species generation and cell sensitivity depends on catalase activity. Apoptosis 11:2225–2235

    Article  CAS  PubMed  Google Scholar 

  • Wen J, You KR, Lee SY, Song CH, Kim DG (2002) Oxidative stress-mediated apoptosis. The anticancer effect of the sesquiterpene lactone parthenolide. J Biol Chem 277:38954–38964

    Article  CAS  PubMed  Google Scholar 

  • Woerdenbag HJ, Lemstra W, Malingre TM, Konings AW (1989) Enhanced cytostatic activity of the sesquiterpene lactone eupatoriopicrin by glutathione depletion. Br J Cancer 59:68–75

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wong HR, Menendez IY (1999) Sesquiterpene lactones inhibit inducible nitric oxide synthase gene expression in cultured rat aortic smooth muscle cells. Biochem Biophys Res Commun 262:375–380

    Article  CAS  PubMed  Google Scholar 

  • Wyrebska A, Gach K, Janecka A (2014) Mini Rev combined effect of parthenolide and various anti-cancer drugs or anticancer candidate substances on malignant cells in vitro and in vivo. Med Chem 14:222–228

    CAS  Google Scholar 

  • Zhang S, Ong CN, Shen HM (2004) Critical roles of intracellular thiols and calcium in parthenolide-induced apoptosis in human colorectal cancer cells. Cancer Lett 208:143–153

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Won YK, Ong CN, Shen HM (2005) Anti-cancer potential of sesquiterpene lactones: bioactivity and molecular mechanisms. Curr Med Chem Anticancer Agents 5:239–249

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, LuY DY, Zhai J, Ji Q, Ma W, Yang M, Fan H, Long J, Tong Z, Shi Y, Jia Y, Han B, Zhang W, Qiu C, Ma X, Li Q, Shi Q, Zhang H, Li D, Zhang J, Lin J, Li LY, Gao Y, Chen Y (2012) Guaianolide sesquiterpene lactones, a source to discover agents that selectively inhibit acute myelogenous leukemia stem and progenitor cells. J Med Chem 55:8757–8769

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Bao YL, Wu Y, Yu CL, Huang YX, Sun Y, Zheng LH, Li YX (2013) Alantolactone induces apoptosis in RKO cells through the generation of reactive oxygen species and the mitochondrial pathway. Mol Med Rep 8:967–972

    CAS  PubMed  Google Scholar 

  • Zhangabylov NS, Yu Dederer L, Gorbacheva LB, Vasil’eva SV, Terekhov AS (2004) Adekenov SM Sesquiterpene lactone arglabin influences DNA synthesis in P388 leukemia cells in vivo. Pharm Chem J 38:651–653

    Article  CAS  Google Scholar 

  • Zheng B, Wu L, Ma L, Liu S, Li L, Xie W, Li X (2013) Telekin induces apoptosis associated with the mitochondria-mediated pathway in human hepatocellular carcinoma cells. Biol Pharm Bull 36:1118–1125

    Article  CAS  PubMed  Google Scholar 

  • Zunino SJ, Ducore JM, Storms DH (2007) Parthenolide induces significant apoptosis and production of reactive oxygen species in high-risk pre-B leukemia cells. Cancer Lett 254:119–127

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financed by the Medical University of Lodz (No 502-14-191 to KG and No 503/1-156-02/503-01) and by the Ministry of Science and Higher Education (Project No. N N204 005736).

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Janecka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gach, K., Długosz, A. & Janecka, A. The role of oxidative stress in anticancer activity of sesquiterpene lactones. Naunyn-Schmiedeberg's Arch Pharmacol 388, 477–486 (2015). https://doi.org/10.1007/s00210-015-1096-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-015-1096-3

Keywords

Navigation