Skip to main content
Log in

Structure-bias relationships for fenoterol stereoisomers in six molecular and cellular assays at the β2-adrenoceptor

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Functional selectivity is well established as an underlying concept of ligand-specific signaling via G protein-coupled receptors (GPCRs). Functionally, selective drugs could show greater therapeutic efficacy and fewer adverse effects. Dual coupling of the β2-adrenoceptor (β2AR) triggers a signal transduction via Gsα and Giα proteins. Here, we examined 12 fenoterol stereoisomers in six molecular and cellular assays. Using β2AR-Gsα and β2AR-Giα fusion proteins, (R,S’)- and (S,S’)-isomers of 4′-methoxy-1-naphthyl-fenoterol were identified as biased ligands with preference for Gs. G protein-independent signaling via β-arrestin-2 was disfavored by these ligands. Isolated human neutrophils constituted an ex vivo model of β2AR signaling and demonstrated functional selectivity through the dissociation of cAMP accumulation and the inhibition of formyl peptide-stimulated production of reactive oxygen species. Ligand bias was calculated using an operational model of agonism and revealed that the fenoterol scaffold constitutes a promising lead structure for the development of Gs-biased β2AR agonists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

7TMR:

Seven-transmembrane domain receptor

AC:

Adenylyl cyclase

β2AR:

β2-Adrenoceptor

β-arr-2:

β-Arrestin type 2

BSA:

Bovine serum albumin

DHA:

Dihydroalprenolol

DMEM:

Dulbecco’s modified Eagle’s medium

ECL:

Extracellular loop

EDTA:

Ethylenediaminetetraacetic acid

EPI:

Epinephrine (adrenaline)

fMLF:

N-formyl-l-methionyl-l-leucyl-l-phenylalanine

Giα:

Inhibitory Gα protein

Gsα:

Stimulatory Gα protein

GPCR:

G protein-coupled receptor

GTPase:

GTP-hydrolyzing activity

ISO:

Isoproterenol

PBS:

Phosphate-buffered saline

PMSF:

Phenylmethanesulfonylfluoride

RGS4:

Regulatory protein of G protein signaling, type 4

ROS:

Reactive oxygen species

Sf9:

Clonal isolate of Spodoptera frugiperda ovary cells

TM:

Transmembrane domain

References

  • Barnes PJ (1999) Effect of beta-agonists on inflammatory cells. J Allergy Clin Immunol 104:S10–S17

    Article  CAS  PubMed  Google Scholar 

  • Black JW, Leff P (1983) Operational models of pharmacological agonism. Proc R Soc Lond B Biol Sci 220:141–162

    Article  CAS  PubMed  Google Scholar 

  • Bock A, Merten N, Schrage R, Dallanoce C, Bätz J, Klöckner J, Schmitz J, Matera C, Simon K, Kebig A, Peters L, Müller A, Schrobang-Ley J, Tränkle C, Hoffmann C, De Amici M, Holzgrabe U, Kostenis E, Mohr K (2012) The allosteric vestibule of a seven transmembrane helical receptor controls G-protein coupling. Nat Commun 3:1044

    Article  PubMed Central  PubMed  Google Scholar 

  • Brunskole-Hummel I, Reinartz MT, Kälble S, Burhenne H, Schwede F, Buschauer A, Seifert R (2013) Dissociations in the effects of β2-adrenergic receptor agonists on cAMP formation and superoxide production in human neutrophils: support for the concept of functional selectivity. PLoS One 8:e64556

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Casella I, Ambrosio C, Gro MC, Molinari P, Costa T (2011) Divergent agonist selectivity in activating β1- and β2-adrenoceptors for G-protein and arrestin coupling. Biochem J 438:191–202

    Article  CAS  PubMed  Google Scholar 

  • Cazzola M, Page CP, Rogliani P, Matera MG (2013) β2-agonist therapy in lung disease. Am J Respir Crit Care Med 187:690–696

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Sassano MF, Zheng L, Setola V, Chen M, Bai X, Frye SV, Wetsel WC, Roth BL, Jin J (2012) Structure-functional selectivity relationship studies of β-arrestin-biased dopamine D2 receptor agonists. J Med Chem 55:7141–7153

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Deshpande DA, Theriot BS, Penn RB, Walker JKL (2008) β-arrestins specifically constrain β2-adrenergic receptor signaling and function in airway smooth muscle. FASEB J 22:2134–2141

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Deupi X, Kobilka BK (2010) Energy landscapes as a tool to integrate GPCR structure, dynamics, and function. Physiology (Bethesda) 25:293–303

    Article  CAS  Google Scholar 

  • Evans BA, Sato M, Sarwar M, Hutchinson DS, Summers RJ (2010) Ligand-directed signalling at β-adrenoceptors. Br J Pharmacol 159:1022–1038

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Evans BA, Broxton N, Merlin J, Sato M, Hutchinson DS, Christopoulos A, Summers RJ (2011) Quantification of functional selectivity at the human α1A-adrenoceptor. Mol Pharmacol 79:298–307

    Article  CAS  PubMed  Google Scholar 

  • Galandrin S, Bouvier M (2006) Distinct signaling profiles of β1 and β2 adrenergic receptor ligands toward adenylyl cyclase and mitogen-activated protein kinase reveals the pluridimensionality of efficacy. Mol Pharmacol 70:1575–1584

    Article  CAS  PubMed  Google Scholar 

  • Galandrin S, Oligny-Longpré G, Bouvier M (2007) The evasive nature of drug efficacy: implications for drug discovery. Trends Pharmacol Sci 28:423–430

    Article  CAS  PubMed  Google Scholar 

  • Gether U, Lin S, Kobilka BK (1995) Fluorescent labeling of purified β2 adrenergic receptor. Evidence for ligand-specific conformational changes. J Biol Chem 270:28268–28275

    Article  CAS  PubMed  Google Scholar 

  • Johnson M (2002) Effects of β2-agonists on resident and infiltrating inflammatory cells. J Allergy Clin Immunol 110:S282–S290

    Article  CAS  PubMed  Google Scholar 

  • Jozwiak K, Khalid C, Tanga MJ, Berzetei-Gurske I, Jimenez L, Kozocas JA, Woo A, Zhu W, Xiao RP, Abernethy DR, Wainer IW (2007) Comparative molecular field analysis of the binding of the stereoisomers of fenoterol and fenoterol derivatives to the β2 adrenergic receptor. J Med Chem 50:2903–2915

    Article  CAS  PubMed  Google Scholar 

  • Jozwiak K, Woo AY, Tanga MJ, Toll L, Jimenez L, Kozocas JA, Plazinska A, Xiao RP, Wainer IW (2010) Comparative molecular field analysis of fenoterol derivatives: a platform towards highly selective and effective β2-adrenergic receptor agonists. Bioorg Med Chem 18:728–736

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kenakin T (2012) New concepts in pharmacological efficacy at 7TM receptors: IUPHAR review 2. Br J Pharmacol 168:554–575

    Article  Google Scholar 

  • Kenakin T, Christopoulos A (2013) Signalling bias in new drug discovery: detection, quantification and therapeutic impact. Nat Rev Drug Discov 12:205–216

    Article  CAS  PubMed  Google Scholar 

  • Kenakin T, Watson C, Muniz-Medina V, Christopoulos A, Novick S (2012) A simple method for quantifying functional selectivity and agonist bias. ACS Chem Neurosci 3:193–203

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu JJ, Horst R, Katritch V, Stevens RC, Wüthrich K (2012) Biased signaling pathways in β2-adrenergic receptor characterized by 19F-NMR. Science 335:1106–1110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Misawa N, Kafi AKM, Hattori M, Miura K, Masuda K, Ozawa T (2010) Rapid and high-sensitivity cell-based assays of protein-protein interactions using split click beetle luciferase complementation: an approach to the study of G-protein-coupled receptors. Anal Chem 82:2552–2560

    Article  CAS  PubMed  Google Scholar 

  • Moore RH, Millman EE, Godines V, Hanania NA, Tran TM, Peng H, Dickey BF, Knoll BJ, Clark RB (2007) Salmeterol stimulation dissociates β2-adrenergic receptor phosphorylation and internalization. Am J Respir Cell Mol Biol 36:254–261

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nygaard R, Zou Y, Dror RO, Mildorf TJ, Arlow DH, Manglik A, Pan AC, Liu CW, Fung JJ, Bokoch MP, Thian FS, Kobilka TS, Shaw DE, Mueller L, Prosser RS, Kobilka BK (2013) The dynamic process of β2-adrenergic receptor activation. Cell 152:532–542

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Overington JP, Al-Lazikani B, Hopkins AL (2006) How many drug targets are there? Nat Rev Drug Discov 5:993–996

    Article  CAS  PubMed  Google Scholar 

  • Plazinska A, Pajak K, Rutkowska E, Jimenez L, Kozocas J, Koolpe G, Tanga M, Toll L, Wainer IW, Jozwiak K (2014) Comparative molecular field analysis of fenoterol derivatives interacting with an agonist-stabilized form of the β2-adrenergic receptor. Bioorg Med Chem 22:234–246

    Article  CAS  PubMed  Google Scholar 

  • R-Core-Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, http://www.R-project.org/

  • Reiner S, Ambrosio M, Hoffmann C, Lohse MJ (2010) Differential signaling of the endogenous agonists at the β2-adrenergic receptor. J Biol Chem 285:36188–36198

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reiter E, Ahn S, Shukla AK, Lefkowitz RJ (2012) Molecular mechanism of β-arrestin-biased agonism at seven-transmembrane receptors. Annu Rev Pharmacol Toxicol 52:179–197

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schneider EH, Seifert R (2010) Fusion proteins as model systems for the analysis of constitutive GPCR activity. Methods Enzymol 485:459–480

    Article  CAS  PubMed  Google Scholar 

  • Seifert R (2013) Functional selectivity of G-protein-coupled receptors: from recombinant systems to native human cells. Biochem Pharmacol 86:853–861

    Article  CAS  PubMed  Google Scholar 

  • Seifert R, Schultz G (1991) The superoxide-forming NADPH oxidase of phagocytes. An enzyme system regulated by multiple mechanisms. Rev Physiol Biochem Pharmacol 117:1–338

    CAS  PubMed  Google Scholar 

  • Seifert R, Gether U, Wenzel-Seifert K, Kobilka BK (1999a) Effects of guanine, inosine, and xanthine nucleotides on β2-adrenergic receptor/Gs interactions: evidence for multiple receptor conformations. Mol Pharmacol 56:348–358

    CAS  PubMed  Google Scholar 

  • Seifert R, Wenzel-Seifert K, Kobilka BK (1999b) GPCR-Gα fusion proteins: molecular analysis of receptor-G-protein coupling. Trends Pharmacol Sci 20:383–389

    Article  CAS  PubMed  Google Scholar 

  • Stallaert W, Dorn JF, van der Westhuizen E, Audet M, Bouvier M (2012) Impedance responses reveal β2-adrenergic receptor signaling pluridimensionality and allow classification of ligands with distinct signaling profiles. PLoS One 7:e29420

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Takakura M, Hattori H, Takeuchi M, Ozawa T (2012) Visualization and quantitative analysis of G protein-coupled receptor-β-arrestin interaction in single cells and specific organs of living mice using split luciferase complementation. ACS Chem Biol 7:901–910

    Article  CAS  PubMed  Google Scholar 

  • Thompson G, Kelly E, Christopoulos A, Canals M (2014) Novel GPCR paradigms at the μ-opioid receptor. Br J Pharmacol. doi:10.1111/bph.12600

    PubMed  Google Scholar 

  • Tikhonova IG, Selvam B, Ivetac A, Wereszczynski J, McCammon JA (2013) Simulations of biased agonists in the β2 adrenergic receptor with accelerated molecular dynamics. Biochemistry 52:5593–5603

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Uzkeser H, Cadirci E, Halici Z, Odabasoglu F, Polat B, Yuksel TN, Ozaltin S, Atalay F (2012) Anti-inflammatory and antinociceptive effects of salbutamol on acute and chronic models of inflammation in rats: involvement of an antioxidant mechanism. Mediat Inflamm 2012:438912

    Google Scholar 

  • van der Westhuizen ET, Breton B, Christopoulos A, Bouvier M (2014) Quantification of ligand bias for clinically relevant β2-adrenergic receptor ligands: implications for drug taxonomy. Mol Pharmacol 85:492–509

    Article  PubMed  Google Scholar 

  • Warne T, Moukhametzianov R, Baker JG, Nehme R, Edwards PC, Leslie AG, Schertler GF, Tate CG (2011) The structural basis for agonist and partial agonist action on a β1-adrenergic receptor. Nature 469:241–244

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Weitl N, Seifert R (2008) Distinct interactions of human β1- and β2-adrenoceptors with isoproterenol, epinephrine, norepinephrine, and dopamine. J Pharmacol Exp Ther 327:760–769

    Article  CAS  PubMed  Google Scholar 

  • Wenzel-Seifert K, Seifert R (2000) Molecular analysis of β2-adrenoceptor coupling to Gs-, Gi-, and Gq-proteins. Mol Pharmacol 58:954–966

    CAS  PubMed  Google Scholar 

  • Whalen EJ, Rajagopal S, Lefkowitz RJ (2011) Therapeutic potential of β-arrestin- and G protein-biased agonists. Trends Mol Med 17:126–139

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • White KL, Scopton AP, Rives M-L, Bikbulatov RV, Polepally PR, Brown PJ, Kenakin T, Javitch JA, Zjawiony JK, Roth BL (2014) Identification of novel functionally selective κ-opioid receptor scaffolds. Mol Pharmacol 85:83–90

    Article  PubMed  Google Scholar 

  • Wisler JW, DeWire SM, Whalen EJ, Violin JD, Drake MT, Ahn S, Shenoy SK, Lefkowitz RJ (2007) A unique mechanism of β-blocker action: carvedilol stimulates β-arrestin signaling. Proc Natl Acad Sci U S A 104:16657–16662

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Woo AYH, Xiao RP (2012) β-Adrenergic receptor subtype signaling in heart: from bench to bedside. Acta Pharmacol Sin 33:335–341

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Woo AY, Wang TB, Zeng X, Zhu W, Abernethy DR, Wainer IW, Xiao RP (2009) Stereochemistry of an agonist determines coupling preference of β2-adrenoceptor to different G proteins in cardiomyocytes. Mol Pharmacol 75:158–165

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xiao RP, Zhang SJ, Chakir K, Avdonin P, Zhu W, Bond RA, Balke CW, Lakatta EG, Cheng H (2003) Enhanced Gi signaling selectively negates β2-adrenergic receptor (AR)—but not β1-AR–mediated positive inotropic effect in myocytes from failing rat hearts. Circulation 108:1633–1639

    Article  CAS  PubMed  Google Scholar 

  • Zhu W, Zeng X, Zheng M, Xiao R-P (2005) The enigma of β2-adrenergic receptor Gi signaling in the heart: the good, the bad, and the ugly. Circ Res 97:507–509

Download references

Acknowledgments

The authors thank Dr. Andreas Bock (University of Würzburg) for the helpful discussion on the aspect of bias quantification. We also thank the reviewers for their constructive critique.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Seifert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reinartz, M.T., Kälble, S., Littmann, T. et al. Structure-bias relationships for fenoterol stereoisomers in six molecular and cellular assays at the β2-adrenoceptor. Naunyn-Schmiedeberg's Arch Pharmacol 388, 51–65 (2015). https://doi.org/10.1007/s00210-014-1054-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-014-1054-5

Keywords

Navigation