Skip to main content

Advertisement

Log in

Treatment with α-lipoic acid enhances the bone healing after femoral fracture model of rats

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

This study investigated the fracture-healing effects of α-lipoic acid (α-LA), which was applied orally once daily in preventive treatment mode during 1 month after fracture induction. Rats were randomly divided into sham-operated group (group 1), femoral fracture control (group 2), femoral fracture + 25 mg/kg α-LA (group 3), and femoral fracture + 50 mg/kg α-LA (group 4). Rats in the experimental groups were orally administered 25 or 50 mg/kg α-LA once daily for 30 days starting from postoperative day 1. Thirty days postoperatively, the rats underwent X-ray imaging and were then euthanized for blood and tissue collection. Histopathological, biochemical, molecular, computed tomography (CT), and mechanical strength tests were performed on samples. The serum levels of osteocalcin (OC), osteopontin (OP), tumor necrosis factor alpha (TNF-α), and interleukin-6 (IL-6) did not differ significantly between groups 2 and 3. Serum OC, OP, TNF-α, and IL-6 levels in group 4 were significantly lower than those in group 3. From X-ray images, staging for fracture healing was scored as <2 in group 2, >2 in group 3, and >3 in group 4. In group 2, the average score of less than 2 suggests insufficient fracture healing; those of both the α-LA groups were >2, indicating progression of healing. Transforming growth factor beta (TGF-β) messenger RNA (mRNA) levels were significantly higher in the sham group than in the femoral fracture control. Both doses of α-LA increased TGF-β mRNA expression compared to the fracture group. CT results and biomechanical testing at 4 week after fracture demonstrated that α-LA has fastened bone healing, which was confirmed by stereological analyses in which 50 mg/kg α-LA increased the number of osteoclasts. Our findings indicate that α-LA supplementation promotes healing of femoral fractures in rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akman S, Canakci V, Kara A, Tozoglu U, Arabaci T, Dagsuyu IM (2013) Therapeutic effects of alpha lipoic acid and vitamin C on alveolar bone resorption after experimental periodontitis in rats: a biochemical, histochemical, and stereologic study. J Periodontol 84:666–674

    Article  PubMed  CAS  Google Scholar 

  • Bast A, Haenen GR (1988) Interplay between lipoic acid and glutathione in the protection against microsomal lipid peroxidation. Biochim Biophys Acta 963:558–561

    Article  PubMed  CAS  Google Scholar 

  • Beeton CA, Chatfield D, Brooks RA, Rushton N (2004) Circulating levels of interleukin-6 and its soluble receptor in patients with head injury and fracture. J Bone Joint Surg Br 86:912–917

    Article  PubMed  CAS  Google Scholar 

  • Bilska A, Wlodek L (2005) Lipoic acid—the drug of the future? Pharmacol Rep PR 57:570–577

    CAS  Google Scholar 

  • Blokhuis TJ, Buma P, Verdonschot N, Gotthardt M, Hendriks T (2012) BMP-7 stimulates early diaphyseal fracture healing in estrogen deficient rats. J Orthop Res Off Publ Orthop Res Soc 30:720–725

    Article  CAS  Google Scholar 

  • Bonewald LF, Mundy GR (1990) Role of transforming growth factor-beta in bone remodeling. Clin Orthop Relat Res 261–276

  • Boskey AL, Maresca M, Ullrich W, Doty SB, Butler WT, Prince CW (1993) Osteopontin-hydroxyapatite interactions in vitro: inhibition of hydroxyapatite formation and growth in a gelatin-gel. Bone Miner 22:147–159

    Article  PubMed  CAS  Google Scholar 

  • Boskey AL, Spevak L, Paschalis E, Doty SB, McKee MD (2002) Osteopontin deficiency increases mineral content and mineral crystallinity in mouse bone. Calcif Tissue Int 71:145–154

    Article  PubMed  CAS  Google Scholar 

  • Buckwalter JA, Einhorn TA, Marsh JL (2001) Fractures in adults. In: Bucholz RW, Heckman JD (eds.) Bone and joint healing Lippincott, Philadelphia, pp. 245–271

  • Cadirci E, Altunkaynak BZ, Halici Z, Odabasoglu F, Uyanik MH, Gundogdu C, Suleyman H, Halici M, Albayrak M, Unal B (2010a) Alpha-lipoic acid as a potential target for the treatment of lung injury caused by cecal ligation and puncture-induced sepsis model in rats. Shock 33:479–484

    PubMed  CAS  Google Scholar 

  • Cadirci E, Oral A, Odabasoglu F, Kilic C, Coskun K, Halici Z, Suleyman H, Nuri Keles O, Unal B (2010b) Atorvastatin reduces tissue damage in rat ovaries subjected to torsion and detorsion: biochemical and histopathologic evaluation. Naunyn Schmiedeberg's Arch Pharmacol 381:455–466

    Article  CAS  Google Scholar 

  • Chellaiah MA, Kizer N, Biswas R, Alvarez U, Strauss-Schoenberger J, Rifas L, Rittling SR, Denhardt DT, Hruska KA (2003) Osteopontin deficiency produces osteoclast dysfunction due to reduced CD44 surface expression. Mol Biol Cell 14:173–189

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cho TJ, Gerstenfeld LC, Barnes GL, Einhorn TA (2001) Cytokines and fracture healing. Curr Opin Orthop 12:403–408

    Article  Google Scholar 

  • Coombes JS, Powers SK, Demirel HA, Jessup J, Vincent HK, Hamilton KL, Naito H, Shanely RA, Sen CK, Packer L, Ji LL (2000) Effect of combined supplementation with vitamin E and alpha-lipoic acid on myocardial performance during in vivo ischaemia-reperfusion. Acta Physiol Scand 169:261–269

    Article  PubMed  CAS  Google Scholar 

  • Cornell CN, Lane JM (1992) Newest factors in fracture healing. Clin Orthop Relat Res 297–311

  • Demir U, Demir T, Ilhan N (2005) The protective effect of alpha-lipoic acid against oxidative damage in rabbit conjunctiva and cornea exposed to ultraviolet radiation. Ophthalmol J Int Ophtalmol Int J Ophthalmol Z Augenheilkd 219:49–53

    Article  CAS  Google Scholar 

  • Dinarello CA, Mier JW (1987) Lymphokines. N Engl J Med 317:940–945

    Article  PubMed  CAS  Google Scholar 

  • Eastell R, Delmas PD, Hodgson SF, Eriksen EF, Mann KG, Riggs BL (1988) Bone formation rate in older normal women: concurrent assessment with bone histomorphometry, calcium kinetics, and biochemical markers. J Clin Endocrinol Metab 67:741–748

    Article  PubMed  CAS  Google Scholar 

  • Einhorn TA, Majeska RJ, Rush EB, Levine PM, Horowitz MC (1995) The expression of cytokine activity by fracture callus. J Bone Miner Res Off J Am Soc Bone Miner Res 10:1272–1281

    Article  CAS  Google Scholar 

  • Estai MA, Suhaimi FH, Das S, Fadzilah FM, Alhabshi SM, Shuid AN, Soelaiman IN (2011) Piper sarmentosum enhances fracture healing in ovariectomized osteoporotic rats: a radiological study. Clinics 66:865–872

    Article  PubMed  PubMed Central  Google Scholar 

  • Evans JL, Goldfine ID (2000) Alpha-lipoic acid: a multifunctional antioxidant that improves insulin sensitivity in patients with type 2 diabetes. Diabetes Technol Ther 2:401–413

    Article  PubMed  CAS  Google Scholar 

  • Fisher DM, Wong JML, Crowley C, Khan WS (2013) Preclinical and clinical studies on the use of growth factors for bone repair: a systematic review. Curr Stem Cell Res Ther 8:260–268

    Article  PubMed  CAS  Google Scholar 

  • Frost HM (1989) The biology of fracture healing. An overview for clinicians. Part II. Clinical orthopaedics and related research 294–309

  • Frost A, Jonsson KB, Nilsson O, Ljunggren O (1997) Inflammatory cytokines regulate proliferation of cultured human osteoblasts. Acta Orthop Scand 68:91–96

    Article  PubMed  CAS  Google Scholar 

  • Giannoudis PV, Kontakis G, Christoforakis Z, Akula M, Tosounidis T, Koutras C (2009) Management, complications and clinical results of femoral head fractures. Injury 40:1245–1251

    Article  PubMed  CAS  Google Scholar 

  • Giannoudis PV, Jones E, Einhorn TA (2011) Fracture healing and bone repair. Injury 42:549–550

    Article  PubMed  Google Scholar 

  • Halici Z, Karaca M, Keles ON, Borekci B, Odabasoglu F, Suleyman H, Cadirci E, Bayir Y, Unal B (2008) Protective effects of amlodipine on ischemia-reperfusion injury of rat ovary: biochemical and histopathologic evaluation. Fertil Steril 90:2408–2415

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto J, Yoshikawa H, Takaoka K, Shimizu N, Masuhara K, Tsuda T, Miyamoto S, Ono K (1989) Inhibitory effects of tumor necrosis factor alpha on fracture healing in rats. Bone 10:453–457

    Article  PubMed  CAS  Google Scholar 

  • Heino TJ, Hentunen TA, Vaananen HK (2002) Osteocytes inhibit osteoclastic bone resorption through transforming growth factor-beta: enhancement by estrogen. J Cell Biochem 85:185–197

    Article  PubMed  CAS  Google Scholar 

  • Hunter GK, Hauschka PV, Poole AR, Rosenberg LC, Goldberg HA (1996) Nucleation and inhibition of hydroxyapatite formation by mineralized tissue proteins. Biochem J 317(Pt 1):59–64

    PubMed  CAS  PubMed Central  Google Scholar 

  • Joffe P, Heaf JG, Hyldstrup L (1994) Osteocalcin: a non-invasive index of metabolic bone disease in patients treated by CAPD. Kidney Int 46:838–846

    Article  PubMed  CAS  Google Scholar 

  • Kalkan Y, Kapakin KA, Kara A, Atabay T, Karadeniz A, Simsek N, Karakus E, Can I, Yildirim S, Ozkanlar S, Sengul E (2012) Protective effect of Panax ginseng against serum biochemical changes and apoptosis in kidney of rats treated with gentamicin sulphate. J Mol Histol 43:603–613

    Article  PubMed  Google Scholar 

  • Kaplan KA, Odabasoglu F, Halici Z, Halici M, Cadirci E, Atalay F, Aydin O, Cakir A (2012) Alpha-lipoic acid protects against indomethacin-induced gastric oxidative toxicity by modulating antioxidant system. J Food Sci 77:H224–230

    Article  PubMed  CAS  Google Scholar 

  • Karsdal MA, Hjorth P, Henriksen K, Kirkegaard T, Nielsen KL, Lou H, Delaisse JM, Foged NT (2003) Transforming growth factor-beta controls human osteoclastogenesis through the p38 MAPK and regulation of RANK expression. J Biol Chem 278:44975–44987

    Article  PubMed  CAS  Google Scholar 

  • Ke HZ, Richards WG, Li X, Ominsky MS (2012) Sclerostin and Dickkopf-1 as therapeutic targets in bone diseases. Endocr Rev 33:747–783

    Article  PubMed  CAS  Google Scholar 

  • Kimble RB, Vannice JL, Bloedow DC, Thompson RC, Hopfer W, Kung VT, Brownfield C, Pacifici R (1994) Interleukin-1 receptor antagonist decreases bone loss and bone resorption in ovariectomized rats. J Clin Invest 93:1959–1967

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kimble RB, Bain S, Pacifici R (1997) The functional block of TNF but not of IL-6 prevents bone loss in ovariectomized mice. J Bone Miner Res Off J Am Soc Bone Miner Res 12:935–941

    Article  CAS  Google Scholar 

  • Kon T, Cho TJ, Aizawa T, Yamazaki M, Nooh N, Graves D, Gerstenfeld LC, Einhorn TA (2001) Expression of osteoprotegerin, receptor activator of NF-kappaB ligand (osteoprotegerin ligand) and related proinflammatory cytokines during fracture healing. J Bone Miner Res Off J Am Soc Bone Miner Res 16:1004–1014

    Article  CAS  Google Scholar 

  • Korthuis RJ, Granger DN, Townsley MI, Taylor AE (1985) The role of oxygen-derived free radicals in ischemia-induced increases in canine skeletal muscle vascular permeability. Circ Res 57:599–609

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Marsell R, Einhorn TA (2011) The biology of fracture healing. Injury 42:551–555

    Article  PubMed  PubMed Central  Google Scholar 

  • McKibbin B (1978) The biology of fracture healing in long bones. J Bone Joint Surg Br 60-B:150–162

    PubMed  CAS  Google Scholar 

  • Melhem MF, Craven PA, Liachenko J, DeRubertis FR (2002) Alpha-lipoic acid attenuates hyperglycemia and prevents glomerular mesangial matrix expansion in diabetes. J Ame Soc Nephrol JASN 13:108–116

    CAS  Google Scholar 

  • Nanes MS (2003) Tumor necrosis factor-alpha: molecular and cellular mechanisms in skeletal pathology. Gene 321:1–15

    Article  PubMed  CAS  Google Scholar 

  • Odabasoglu F, Halici Z, Aygun H, Halici M, Atalay F, Cakir A, Cadirci E, Bayir Y, Suleyman H (2011) α-Lipoic acid has anti-inflammatory and anti-oxidative properties: an experimental study in rats with carrageenan-induced acute and cotton pellet-induced chronic inflammations. Br J Nutr 105:31–43

    Article  PubMed  CAS  Google Scholar 

  • Orsal E, Halici Z, Bayir Y, Cadirci E, Bilen H, Ferah I, Aydin A, Ozkanlar S, Ayan AK, Seven B, Ozaltin S (2013) The role of carnitine on ovariectomy and inflammation-induced osteoporosis in rats. Exp biol Med 238:1406–1412

    Article  Google Scholar 

  • Packer L, Witt EH, Tritschler HJ (1995) alpha-Lipoic acid as a biological antioxidant. Free Radic Biol Med 19:227–250

    Article  PubMed  CAS  Google Scholar 

  • Pan WT, Einhorn TA (1992) The biochemistry of fracture healing. Curr Orthop 6:207–213

    Article  Google Scholar 

  • Papakostidis C, Bhandari M, Giannoudis PV (2013) Distraction osteogenesis in the treatment of long bone defects of the lower limbs: effectiveness, complications and clinical results; a systematic review and meta-analysis. Bone Joint J 95-B:1673–1680

    Article  PubMed  CAS  Google Scholar 

  • Patrick L (2000) Nutrients and HIV: part three—N-acetylcysteine, alpha-lipoic acid, L-glutamine, and L-carnitine. Alternative Med Rev J Clin Ther 5:290–305

    CAS  Google Scholar 

  • Phillips AM (2005) Overview of the fracture healing cascade. Injury 36(Suppl 3):S5–7

    Article  PubMed  Google Scholar 

  • Polat B, Halici Z, Cadirci E, Albayrak A, Karakus E, Bayir Y, Bilen H, Sahin A, Yuksel TN (2013) The effect of alpha-lipoic acid in ovariectomy and inflammation-mediated osteoporosis on the skeletal status of rat bone. Eur J Pharmacol 718:469–474

    Article  PubMed  CAS  Google Scholar 

  • Price PA, Williamson MK, Lothringer JW (1981) Origin of the vitamin K-dependent bone protein found in plasma and its clearance by kidney and bone. J Biol Chem 256:12760–12766

    PubMed  CAS  Google Scholar 

  • Rittling SR, Matsumoto HN, McKee MD, Nanci A, An XR, Novick KE, Kowalski AJ, Noda M, Denhardt DT (1998) Mice lacking osteopontin show normal development and bone structure but display altered osteoclast formation in vitro. J Bone Miner Res Off J Am Soc Bone Miner Res 13:1101–1111

    Article  CAS  Google Scholar 

  • Roelen BA, Dijke P (2003) Controlling mesenchymal stem cell differentiation by TGFBeta family members. J Orthop Sci Off J Japan Orthop Assoc 8:740–748

    Google Scholar 

  • Sarisozen B, Durak K, Dincer G, Bilgen OF (2002) The effects of vitamins E and C on fracture healing in rats. J Int Med Res 30:309–313

    Article  PubMed  CAS  Google Scholar 

  • Shinar DM, Rodan GA (1990) Biphasic effects of transforming growth factor-beta on the production of osteoclast-like cells in mouse bone marrow cultures: the role of prostaglandins in the generation of these cells. Endocrinology 126:3153–3158

    Article  PubMed  CAS  Google Scholar 

  • Shuid AN, Mohamad S, Muhammad N, Fadzilah FM, Mokhtar SA, Mohamed N, Soelaiman IN (2011) Effects of alpha-tocopherol on the early phase of osteoporotic fracture healing. J Orthop Res Off Publ Orthop Res Soc 29:1732–1738

    Article  CAS  Google Scholar 

  • Skjodt H, Russell G (1992) Bone cell biology and the regulation of bone metabolism. In: Gown M (ed) Cytokines and Bone Metabolism. CRC Press, Boca Raton, pp 1–70

    Google Scholar 

  • Stashenko P, Dewhirst FE, Peros WJ, Kent RL, Ago JM (1987) Synergistic interactions between interleukin 1, tumor necrosis factor, and lymphotoxin in bone resorption. J Immunol 138:1464–1468

    PubMed  CAS  Google Scholar 

  • Suzuki K, Zhu B, Rittling SR, Denhardt DT, Goldberg HA, McCulloch CA, Sodek J (2002) Colocalization of intracellular osteopontin with CD44 is associated with migration, cell fusion, and resorption in osteoclasts. J Bone Miner Res Off J Am Soc Bone Miner Res 17:1486–1497

    Article  CAS  Google Scholar 

  • Thiede MA, Smock SL, Petersen DN, Grasser WA, Thompson DD, Nishimoto SK (1994) Presence of messenger ribonucleic acid encoding osteocalcin, a marker of bone turnover, in bone marrow megakaryocytes and peripheral blood platelets. Endocrinology 135:929–937

    PubMed  CAS  Google Scholar 

  • van Acker SA, Koymans LM, Bast A (1993) Molecular pharmacology of vitamin E: structural aspects of antioxidant activity. Free Radic Biol Med 15:311–328

    Article  PubMed  Google Scholar 

  • Wang X, Yu Y, Ji L, Liang X, Zhang T, Hai CX (2011) Alpha-lipoic acid protects against myocardial ischemia/reperfusion injury via multiple target effects. Food Chem Toxicol Int J published Br Ind Biol Res Assoc 49:2750–2757

    Article  CAS  Google Scholar 

  • Xu H, Watkins BA, Seifert MF (1995) Vitamin E stimulates trabecular bone formation and alters epiphyseal cartilage morphometry. Calcif Tissue Int 57:293–300

    Article  PubMed  CAS  Google Scholar 

  • Ziegler D, Reljanovic M, Mehnert H, Gries FA (1999) Alpha-lipoic acid in the treatment of diabetic polyneuropathy in Germany: current evidence from clinical trials. Exp Clin Endocrinol Diabetes Off J Ger Soc of Endocrinol Ger Diabetes Association 107:421–430

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the Ataturk University Medical Research Council (grant number 2011/02).

Conflict of interest

None of the authors have a commercial interest, financial interest, and/or other relationship with manufacturers of pharmaceuticals, laboratory supplies, and/or medical devices or with commercial providers of medically related services.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zekai Halici.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aydin, A., Halici, Z., Akoz, A. et al. Treatment with α-lipoic acid enhances the bone healing after femoral fracture model of rats. Naunyn-Schmiedeberg's Arch Pharmacol 387, 1025–1036 (2014). https://doi.org/10.1007/s00210-014-1021-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-014-1021-1

Keywords

Navigation