Skip to main content
Log in

O-2050 facilitates noradrenaline release and increases the CB1 receptor inverse agonistic effect of rimonabant in the guinea pig hippocampus

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

The cannabinoid CB1 receptors on the noradrenergic neurons in guinea pig hippocampal slices show an endogenous endocannabinoid tone. This conclusion is based on rimonabant, the facilitatory effect of which on noradrenaline release might be due to its inverse CB1 receptor agonism and/or the interruption of a tonic inhibition elicited by endocannabinoids. To examine the latter mechanism, a neutral antagonist would be suitable. Therefore, we studied whether O-2050 is a neutral CB1 receptor antagonist in the guinea pig hippocampus and whether it mimics the facilitatory effect of rimonabant. CB1 receptor affinity of O-2050 was quantified in cerebrocortical membranes, using 3H-rimonabant binding. Its CB1 receptor potency and effect on 3H-noradrenaline release were determined in superfused hippocampal slices. Its intrinsic activity at CB1 receptors was studied in hippocampal membranes, using 35S-GTPγS binding. Endocannabinoid levels in hippocampus were determined by liquid chromatography-multiple reaction monitoring. O-2050 was about ten times less potent than rimonabant in its CB1 receptor affinity, potency and facilitatory effect on noradrenaline release. Although not affecting 35S-GTPγS binding by itself, O-2050 shifted the concentration-response curve of a CB1 receptor agonist to the right but that of rimonabant to the left. Levels of anandamide and 2-arachidonoyl glycerol in guinea pig hippocampus closely resembled those in mouse hippocampus. In conclusion, our results with O-2050 confirm that the CB1 receptors on noradrenergic neurons of the guinea pig hippocampus show an endogenous tone. To differentiate between the two mechanisms leading to an endogenous tone, O-2050 is not superior to rimonabant since O-2050 may increase the inverse agonistic effect of endocannabinoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Blankman JL, Cravatt BF (2013) Chemical probes of endocannabinoid metabolism. Pharmacol Rev 65:849–871

    Article  PubMed Central  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantitites of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Breivogel CS, Sim LJ, Childers SR (1997) Regional differences in cannabinoid receptor/G-protein coupling in rat brain. J Pharmacol Exp Ther 282:1632–1642

    CAS  PubMed  Google Scholar 

  • Brents LK, Reichard EE, Zimmermann SM, Moran JH, Fantegrossi WE, Prather PL (2011) Phase I hydroxylated metabolites of the K2 synthetic compound JWH-018 retain in vitro and in vivo cannabinoid receptor affinity and activity. PLoS One 6:e21917

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Canals M, Milligan G (2008) Constitutive activity of the cannabinoid CB1 receptor regulates the function of co-expressed mu opioid receptors. J Biol Chem 283:11424–11434

    Article  CAS  PubMed  Google Scholar 

  • Devane WA, Dysarz FA, Johnson MR, Melvin LS, Howlett AC (1988) Determination and characterization of a cannabinoid receptor in rat brain. Mol Pharmacol 34:605–613

    CAS  PubMed  Google Scholar 

  • Di Marzo V, De Petrocellis L, Bisogno T (2005) The biosynthesis, fate and pharmacological properties of endocannabinoids. Handb Exp Pharmacol 168:147–185

    Article  PubMed  Google Scholar 

  • Feuerstein (2014) A pharmacological paradox: may a neutral antagonist shift an agonist concentration-response curve to the left? Naunyn-Schmiedeberg’s Arch Pharmacol. doi:10.1007/s00210-014-0993-1

  • Francisco MEY, Seltzman HH, Gilliam AF, Mitchell RA, Rider SL, Pertwee RG, Stevenson LA, Thomas BF (2002) Synthesis and structure-activity relationships of amide and hydrazide analogues of the cannabinoid CB1 receptor antagonist N-(piperidinyl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (SR141716). J Med Chem 45:2708–2719

    Article  CAS  PubMed  Google Scholar 

  • Furchgott RF (1972) The classification of adrenoceptors (adrenergic receptors). An evaluation from the standpoint of receptor theory. Handb Exp Pharmacol 33:283–335

    CAS  Google Scholar 

  • Hudson BD, Hébert TE, Kelly ME (2010) Physical and functional interaction between CB1 cannabinoid receptors and β2-adrenoceptors. Br J Pharmacol 160:627–642

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Izzo AA, Sharkey KA (2010) Cannabinoids and the gut: new developments and emerging concepts. Pharmacol Ther 126:21–38

    Article  CAS  PubMed  Google Scholar 

  • Jensen AA, Spalding TA (2004) Allosteric modulation of G-protein coupled receptors. Eur J Pharm Sci 21:407–420

    Article  CAS  PubMed  Google Scholar 

  • Makwana R, Molleman A, Parsons ME (2010) Evidence for both inverse agonism at the cannabinoid CB1 receptor and the lack of an endogenous cannabinoid tone in the rat and guinea-pig isolated ileum myenteric plexus-longitudinal muscle preparation. Br J Pharmacol 160:615–626

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI (1990) Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346:561–564

    Article  CAS  PubMed  Google Scholar 

  • Mechoulam R, Parker LA (2013) The endocannabinoid system and the brain. Annu Rev Psychol 64:21–47

    Article  PubMed  Google Scholar 

  • Montecucco F, Di Marzo V (2012) At the heart of the matter: the endocannabinoid system in cardiovascular function and dysfunction. Trends Pharmacol Sci 33:331–340

    Article  CAS  PubMed  Google Scholar 

  • Moore RJ, Xiao R, Sim-Selley L, Childers SR (2000) Agonist-stimulated [35S]GTPγS binding in brain. Modulation by endogenous adenosine. Neuropharmacology 39:282–289

    Article  CAS  PubMed  Google Scholar 

  • Morrow JD, Roberts LJ (2001) Lipid-derived autacoids. Eicosanoids and platelet-activating factor. In: Hardman JG, Limbird LE, Gilman AG (eds) Goodman & Gilman’s The Pharmacological Basis of Therapeutics, 10th edn. McGraw-Hill, New York, pp 669–685

    Google Scholar 

  • Ohno-Shosaku T, Tanimura A, Hashimotodani Y, Kano M (2012) Endocannabinoids and retrograde modulation of synaptic transmission. Neuroscientist 18:119–132

    Article  CAS  PubMed  Google Scholar 

  • Pertwee RG (2005) Inverse agonism and neutral antagonism at cannabinoid CB1 receptors. Life Sci 76:1307–1324

    Article  CAS  PubMed  Google Scholar 

  • Pertwee RG, Howlett AC, Abood ME, Alexander SP, Di Marzo V, Elphick MR, Greasley PJ, Hansen HS, Kunos G, Mackie K, Mechoulam R, Ross RA (2010) International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB1 and CB2. Pharmacol Rev 62:588–631

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Raiteri L, Raiteri M (2000) Synaptosomes still viable after 25 years of superfusion. Neurochem Res 25:1265–1274

    Article  CAS  PubMed  Google Scholar 

  • Rinaldi-Carmona M, Pialot F, Congy C, Redon E, Barth F, Bachy A, Brelière JC, Soubrié P, Le Fur G (1996) Characterization and distribution of binding sites for [3H]-SR 141716A, a selective brain (CB1) cannabinoid receptor antagonist, in rodent brain. Life Sci 58:1239–1247

    Article  CAS  PubMed  Google Scholar 

  • Schlicker E, Göthert M (1998) Interactions between the presynaptic α2-autoreceptor and presynaptic inhibitory heteroreceptors on noradrenergic neurones. Brain Res Bull 47:129–132

    Article  CAS  PubMed  Google Scholar 

  • Schlicker E, Kathmann M (2001) Modulation of transmitter release via presynaptic cannabinoid receptors. Trends Pharmacol Sci 22:565–572

    Article  CAS  PubMed  Google Scholar 

  • Schlicker E, Timm J, Zentner J, Göthert M (1997) Cannabinoid CB1 receptor-mediated inhibition of noradrenaline release in the human and guinea-pig hippocampus. Naunyn-Schmiedeberg’s Arch Pharmacol 356:583–589

    Article  CAS  Google Scholar 

  • Schlicker E, Liedtke S, Flau K, Kathmann M (2002) Further evidence that the cannabinoid receptor inhibiting noradrenaline release in the guinea-pig brain belongs to the CB1 subtype and is subject to an endogenous tone. Pharmacologist 44(Suppl 1):A112

    Google Scholar 

  • Schulte K, Steingrüber N, Jergas B, Redmer A, Kurz CM, Buchalla R, Lutz B, Zimmer A, Schlicker E (2012) Cannabinoid CB1 receptor activation, pharmacological blockade, or genetic ablation affects the function of the muscarinic auto- and heteroreceptor. Naunyn-Schmiedeberg’s Arch Pharmacol 385:385–396

    Article  CAS  Google Scholar 

  • Schultheiß T, Flau K, Kathmann M, Göthert M, Schlicker E (2005) Cannabinoid CB1 receptor-mediated inhibition of noradrenaline release in guinea-pig vessels, but not in rat and mouse aorta. Naunyn-Schmiedeberg’s Arch Pharmacol 372:139–146

    Article  Google Scholar 

  • Seifert R, Wenzel-Seifert K (2002) Constitutive activity of G-protein-coupled receptors: cause of disease and common property of wild-type receptors. Naunyn-Schmiedeberg’s Arch Pharmacol 366:381–416

    Article  CAS  Google Scholar 

  • Silvestri C, Di Marzo V (2013) The endocannabinoid system in energy homeostasis and the etiopathology of metabolic disorders. Cell Metab 17:475–490

    Article  CAS  PubMed  Google Scholar 

  • Starke K, Göthert M, Kilbinger H (1989) Modulation of neurotransmitter release by presynaptic autoreceptors. Physiol Rev 69:864–989

    CAS  PubMed  Google Scholar 

  • Steffens M, Zentner J, Honegger J, Feuerstein TJ (2005) Binding affinity and agonist activity of putative endogenous cannabinoids at the human neocortical CB1 receptor. Biochem Pharmacol 69:169–178

    Article  CAS  PubMed  Google Scholar 

  • Szabo B, Schlicker E (2005) Effects of cannabinoids on neurotransmission. Handb Exp Pharmacol 168:327–365

    Article  CAS  PubMed  Google Scholar 

  • van Diepen H, Schlicker E, Michel MC (2008) Prejunctional and peripheral effects of the cannabinoid CB1 receptor inverse agonist rimonabant (SR 141716). Naunyn-Schmiedeberg’s Arch Pharmacol 378:345–369

    Article  Google Scholar 

  • Van Vliet BJ, Nievelstein HNMW, Long SK, Kruse CG (2000) CB1 receptor mediated effects on brain neurotransmitter systems. Eur Neuropsychopharmacol 10(Suppl 3):S182–S183

    Article  Google Scholar 

  • Wenzel D, Matthey M, Bindila L, Lerner R, Lutz B, Zimmer A, Fleischmann BK (2013) Endocannabinoid anandamide mediates hypoxic pulmonary vasoconstriction. Proc Natl Acad Sci 110:18710–18715

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wiley JL, Breivogel CS, Mahadevan A, Pertwee RG, Cascio MG, Bolognini HJW, Walentiny DM, Vann RE, Razdan RK, Martin BR (2011) Structural and pharmacological analysis of O-2050, a putative neutral cannabinoid CB1 receptor agonist. Eur J Pharmacol 651:96–105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wiley JL, Marusich JA, Zhang Y, Fulp A, Maitra R, Thomas BF, Mahadevan A (2012) Structural analogs of pyrazole and sulfonamide cannabinoids: effects on acute food intake in mice. Eur J Pharmacol 695:62–70

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zogopoulos P, Vasileiou I, Patsouris E, Theocharis SE (2013) The role of endocannabinoids in pain modulation. Fundam Clin Pharmacol 27:64–80

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The financial support by the Deutsche Forschungsgemeinschaft to B.L. and E.S. within the “Forschergruppe 926” is gratefully acknowledged. We would also like to thank Mrs. D. Petri and Mrs. C. Schwitter for their skilled technical assistance and Sanofi-Aventis for a gift of rimonabant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eberhard Schlicker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jergas, B., Schulte, K., Bindila, L. et al. O-2050 facilitates noradrenaline release and increases the CB1 receptor inverse agonistic effect of rimonabant in the guinea pig hippocampus. Naunyn-Schmiedeberg's Arch Pharmacol 387, 621–628 (2014). https://doi.org/10.1007/s00210-014-0991-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-014-0991-3

Keywords

Navigation