Skip to main content
Log in

Nonempty interior of configuration sets via microlocal partition optimization

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We prove new results of Mattila–Sjölin type, giving lower bounds on Hausdorff dimensions of thin sets \(E\subset \mathbb {R}^d\) ensuring that various k-point configuration sets, generated by elements of E, have nonempty interior. The dimensional thresholds in our previous work (Greenleaf et al., Mathematika 68(1):163–190, 2022) were dictated by associating to a configuration function a family of generalized Radon transforms, and then optimizing \(L^2\)-Sobolev estimates for them over all nontrivial bipartite partitions of the k points. In the current work, we extend this by allowing the optimization to be done locally over the configuration’s incidence relation, or even microlocally over the conormal bundle of the incidence relation. We use this approach to prove Mattila–Sjölin type results for (i) areas of subtriangles determined by quadrilaterals and pentagons in a set \(E\subset \mathbb {R}^2\); (ii) pairs of ratios of distances of 4-tuples in \(\mathbb {R}^d\); and (iii) similarity classes of triangles in \(\mathbb {R}^d\), as well as to (iv) give a short proof of Palsson and Romero Acosta’s result on congruence classes of triangles in \(\mathbb {R}^d\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

There is no data associated with this research.

References

  1. Bennett, M., Iosevich, A., Taylor, K.: Finite chains inside thin subsets of \({{\mathbb{R} }}^d\). Anal. PDE 9(3), 597–614 (2016)

    Article  MathSciNet  Google Scholar 

  2. Borges, T., Iosevich, A., Ou, Y.: A singular variant of the Falconer distance problem (2023). arXiv:2306.05247

  3. Chan, V., Łaba, I., Pramanik, M.: Finite configurations in sparse sets. J. d’Analyse Math. 128, 289–335 (2016)

    Article  MathSciNet  Google Scholar 

  4. Cheong, D., Koh, D., Pham, T., Shen, C.Y.: Mattila–Sjölin type functions: a finite field model. Vietnam J. Math. (2021). https://doi.org/10.1007/s10013-021-00538-z

    Article  Google Scholar 

  5. Falconer, K.J.: On the Hausdorff dimensions of distance sets. Mathematika 32, 206–212 (1986)

    Article  MathSciNet  Google Scholar 

  6. Gaitan, J., Greenleaf, A., Palsson, E., Psaromiligkos, G.: On restricted Falconer distance sets. Canad. J. Math. (2024) (to appear). arXiv:2305.18053v2

  7. Grafakos, L., Greenleaf, A., Iosevich, A., Palsson, E.: Multilinear generalized Radon transforms and point configurations. Forum Math. 27(4), 2323–2360 (2015)

    Article  MathSciNet  Google Scholar 

  8. Greenleaf, A., Iosevich, A., Pramanik, M.: On necklaces inside thin subsets of \({\mathbb{R} }^d\). Math. Res. Lett. 24(2), 347–362 (2017)

    Article  MathSciNet  Google Scholar 

  9. Greenleaf, A., Iosevich, A., Taylor, K.: Configuration sets with nonempty interior. J. Geom. Anal. 31(7), 6662–6680 (2021). https://doi.org/10.1007/s12220-019-00288-y

    Article  MathSciNet  Google Scholar 

  10. Greenleaf, A., Iosevich, A., Taylor, K.: On \(k\)-point configuration sets with nonempty interior. Mathematika 68(1), 163–190 (2022). https://doi.org/10.1112/mtk.12114

    Article  MathSciNet  Google Scholar 

  11. Greenleaf, A., Seeger, A.: Fourier integral operators with fold singularities. J. Reine U. Angew. Math. 455, 35–56 (1994)

    MathSciNet  Google Scholar 

  12. Guillemin, V., Sternberg, S.: Geometric asymptotics. Math. Surveys 14. Amer. Math. Soc., Providence, R.I. (1977)

  13. Guillemin, V., Sternberg, S.: Some problems in integral geometry and some related problems in microlocal analysis. Am. J. Math. 101(4), 915–955 (1979)

    Article  MathSciNet  Google Scholar 

  14. Helgason, S.: The Radon transform on Euclidean spaces, compact two-point homogeneous spaces and Grassmann manifolds. Acta Math. 113, 153–180 (1965)

    Article  MathSciNet  Google Scholar 

  15. Hörmander, L.: Fourier integral operators. I. Acta Math. 127(1–2), 79–183 (1971)

    Article  MathSciNet  Google Scholar 

  16. Hörmander, L.: The analysis of linear partial differential operators, III and IV. Grund. math. Wissen. 274 and 275. Springer, Berlin (1985)

  17. Iosevich, A., Liu, B.: Pinned distance problem, slicing measures, and local smoothing estimates. Trans. Am. Math. Soc. 371(6), 4459–4474 (2019)

    Article  MathSciNet  Google Scholar 

  18. Iosevich, A., Mourgoglou, M., Taylor, K.: On the Mattila-Sjölin theorem for distance sets. Ann. Acad. Sci. Fenn. Math. 37(2), 557–562 (2012)

    Article  MathSciNet  Google Scholar 

  19. Iosevich, A., Taylor, K.: Finite trees inside thin subsets of \({\mathbb{R} }^d\), Modern Methods in Operator Theory and Harmonic Analysis, Springer Proc. Math. Stat. 291, 51–56 (2019)

  20. Iosevich, A., Taylor, K., Uriarte-Tuero, I.: Pinned geometric configurations in Euclidean space and Riemannian manifolds. Mathematics 9, 1802 (2021)

    Article  Google Scholar 

  21. Koh, D., Pham, T., Shen, C.-Y.: On the Mattila–Sjölin Distance Theorem for Product Sets. arXiv:2103.11418 (2021)

  22. Mattila, P.: Geometry of sets and measures in Euclidean spaces. Fractals and rectifiability. Cambridge Studies in Adv. Math. 44. Cambridge Univ. Press, Cambridge (1995)

  23. Mattila, P.: Fourier analysis and Hausdorff dimension. Cambridge Studies in Adv. Math. 150. Cambridge Univ. Press (2015)

  24. Mattila, P., Sjölin, P.: Regularity of distance measures and sets. Math. Nachr. 204, 157–162 (1999)

    Article  MathSciNet  Google Scholar 

  25. McDonald, A.: Areas spanned by point configurations in the plane. Proc. Am. Math. Soc. 149(5), 2035–2049 (2021)

    Article  MathSciNet  Google Scholar 

  26. McDonald, A., Taylor, K.: Finite point configurations in products of thick Cantor sets and a robust nonlinear Newhouse gap lemma. Math. Proc. Cambr. Philos. Soc. 175, 285–301 (2023)

    Article  MathSciNet  Google Scholar 

  27. McDonald, A., Taylor, K.: Constant gap length trees in products of thick Cantor sets. In: Proc. Royal Soc. Edinburgh, Section A: Math, to appear (2022). arXiv:2211.10750

  28. Palsson, E., Acosta, F. Romero: A Mattila–Sjölin theorem for simplices in low dimensions (2022). arXiv:2208.07198

  29. Palsson, E., Acosta, F. Romero: A Mattila–Sjölin theorem for triangles. J. Funct. Anal. 284(6), 20 (2023) (Paper No. 109814)

  30. Peres, Y., Schlag, W.: Smoothness of projections, Bernoulli convolutions, and the dimension of exceptions. Duke Math. J. 102(2), 193–251 (2000)

    Article  MathSciNet  Google Scholar 

  31. Simon, K., Taylor, K.: Interior of sums of planar sets and curves. Math. Proc. Cambr. Phil. Soc. 168(1), 119–148 (2020)

    Article  MathSciNet  Google Scholar 

  32. Steinhaus, H.: Sur les distances des points dans les ensembles de mesure positive. Fund. Math. 1, 93–104 (1920)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allan Greenleaf.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

AG is supported in part by US National Science Foundation DMS-1906186 and -2204943, AI by NSF HDR TRIPODS-1934962 and DMS-2154232, and KT by Simons Foundation Grant 523555. The authors thank the referee for helpful suggestions and questions which improved the paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Greenleaf, A., Iosevich, A. & Taylor, K. Nonempty interior of configuration sets via microlocal partition optimization. Math. Z. 306, 66 (2024). https://doi.org/10.1007/s00209-024-03466-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00209-024-03466-z

Keywords

Mathematics Subject Classification

Navigation