Skip to main content
Log in

Twisted conformal blocks and their dimension

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Let \(\Gamma \) be a finite group acting on a simple Lie algebra \({\mathfrak {g}}\) and acting on a s-pointed projective curve \((\Sigma , \vec {p}=\{p_1, \ldots , p_s\})\) faithfully (for \(s\ge 1\)). Also, let an integrable highest weight module \({\mathscr {H}}_c(\lambda _i)\) of an appropriate twisted affine Lie algebra determined by the ramification at \(p_i\) with a fixed central charge c is attached to each \(p_i\). We prove that the space of twisted conformal blocks attached to this data is isomorphic to the space associated to a quotient group of \(\Gamma \) acting on \(\mathfrak {g}\) by diagram automorphisms and acting on a quotient of \(\Sigma \). Under some mild conditions on ramification types, we prove that calculating the dimension of twisted conformal blocks can be reduced to the situation when \(\Gamma \) acts on \(\mathfrak {g}\) by diagram automorphisms and covers of \({\mathbb {P}}^1\) with 3 marked points. Assuming a twisted analogue of Teleman’s vanishing theorem of Lie algebra homology, we derive an analogue of the Kac–Walton formula and the Verlinde formula for general \(\Gamma \)-curves (with mild restrictions on ramification types). In particular, if the Lie algebra \(\mathfrak {g}\) is not of type \(D_4\), there are no restrictions on ramification types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beauville, A.: Conformal blocks, fusion rules and the Verlinde formula. In: Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry (Ramat Gan, 1993), pp. 75–96, Israel Math. Conf. Proc., 9, Bar-Ilan Univ., Ramat Gan (1996)

  2. Birke, L., Fuchs, J., Schweigert, C.: Symmetry breaking boundary conditions and WZW orbifolds. Adv. Theor. Math. Phys. 3(3), 671–726 (1999)

    Article  MathSciNet  Google Scholar 

  3. Besson, M., Hong, J.: Smooth locus of twisted affine Schubert varieties and twisted affine Demazure modules. arXiv:2010.11357

  4. Bertin, J., Romagny, M.: Champs de Hurwitz, Mémoires de la Société Mathématique de France. Numéro 125–126, Société Mathématique de France (2011)

  5. Bourbaki, N.: Groupes et Algèbres de Lie, Ch. 4–6. Masson, Paris (1981)

  6. Damiolini, C.: Conformal blocks attached to twisted groups. Math. Z. 295(3–4), 1643–1681 (2020)

    Article  MathSciNet  Google Scholar 

  7. Damiolini, C.: On equivariant bundles and their moduli spaces. AC. R. Math. Acad. Sci. Paris 362 (2024)

  8. Deshpande, T., Mukhopadhyay, S.: Crossed modular categories and the Verlinde formula for twisted conformal blocks. Camb. J. Math. 11, 159–297 (2023)

    Article  MathSciNet  Google Scholar 

  9. Faltings, G.: A proof for the Verlinde formula. J. Algebraic Geom. 3(2), 347–374 (1994)

    MathSciNet  Google Scholar 

  10. Frenkel, E., Szczesny, M.: Twisted modules over vertex algebras on algebraic curves. Adv. Math. 187, 195–227 (2004)

    Article  MathSciNet  Google Scholar 

  11. Hartshorne, R.: Algebraic Geometry. GTM 52. Springer, Berlin (1977)

  12. Heinloth, J.: Uniformization of \({\cal{G} }\)-bundles. Math. Ann. 347(3), 499–528 (2010)

    Article  MathSciNet  Google Scholar 

  13. Hong, J., Kumar, S.: Conformal blocks for Galois covers of algebraic curves. Compos. Math. 159, 2191–2259 (2023)

    Article  MathSciNet  Google Scholar 

  14. Hong, J., Kumar, S.: Lie algebra Cohomology of the positive part of twisted affine Lie algebras. arXiv:2302.11105

  15. Hong, J.: Conformal blocks, Verlinde formula and diagram automorphisms. Adv. Math. 354(1), 1–50 (2019). https://doi.org/10.1016/j.aim.2019.106731

    Article  MathSciNet  Google Scholar 

  16. Hong, J.: Fusion ring revisited. Representations of Lie algebras, quantum groups and related topics, Contemp. Math., vol. 713, pp. 135–147. Amer. Math. Soc., RI (2018)

  17. Humphreys, J.E.: Linear Algebraic Groups. Graduate Texts in Mathematics, vol. 21. Springer, New York (1975)

  18. Jarvis, T., Kaufmann, R., Kimura, T.: Pointed admissible G-covers and G-equivariant cohomological field theories. Compos. Math. 141(4), 926–978 (2005)

    Article  MathSciNet  Google Scholar 

  19. Kac, V.: Infinite-Dimensional Lie Algebras, 3rd edn. Cambridge University Press, Cambridge (1990)

    Book  Google Scholar 

  20. Kostant, B.: Powers of the Euler product and commutative subalgebras of a complex simple Lie algebra. Invent. Math. 158, 181–226 (2004)

    Article  MathSciNet  Google Scholar 

  21. Kumar, S.: Kac-Moody Groups, Their Flag Varieties and Representation Theory. Progress in Mathematics, vol. 204. Birkhäuser, Boston (2002)

  22. Kumar, S.: Conformal Blocks, Generalized Theta Functions and the Verlinde Formula. New Mathematical Monographs, vol. 42. Cambridge University Press, Cambridge (2022)

  23. Sorger, C.: La formule de Verlinde, Séminaire Bourbaki, 47ème année, n\(^o\)794 (1994)

  24. Springer, T.A.: Linear Algebraic Groups. Modern Birkhäuser Classics, 2nd edn. Birkhäuser, Boston (2009)

  25. Steinberg, R.: Endomorphisms of Linear Algebraic Groups, Memoirs of the American Mathematical Society, vol. 80. American Mathematical Society, Providence (1968)

    Google Scholar 

  26. Teleman, C.: Lie algebra Cohomology and the fusion rules. Commun. Math. Phys. 173(2), 265–311 (1995)

    Article  MathSciNet  Google Scholar 

  27. Tsuchiya, A., Ueno, K., Yamada, Y.: Conformal field theory on universal family of stable curves with gauge symmetries. In: Integrable Systems in Quantum Field Theory and Statistical Mechanics, Volume 19 of Adv. Stud. Pure Math., pp. 459–566 (1989)

  28. Verlinde, E.: Fusion rules and modular transformations in 2D conformal field theory. Nucl. Phys. B 300, 360–376 (1988)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Constantin Teleman for some helpful correspondences and conversations. The first author was partially supported by the NSF grant DMS-2001365 and the second author was partially supported by the NSF Grant DMS-1802328.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiuzu Hong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, J., Kumar, S. Twisted conformal blocks and their dimension. Math. Z. 306, 76 (2024). https://doi.org/10.1007/s00209-024-03461-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00209-024-03461-4

Navigation