Skip to main content
Log in

Effective good divisibility of rational homogeneous varieties

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We compute the effective good divisibility of a rational homogeneous variety, extending an earlier result for complex Grassmannians by Naldi and Occhetta. Non-existence of nonconstant morphisms to rational homogeneous varieties of classical Lie type are obtained as applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The data that support the findings of this study are available in the webpage https://math.sysu.edu.cn/gagp/czli.

References

  1. Bergeron, N., Sottile, F.: A Pieri-type formula for isotropic flag manifolds. Trans. Amer. Math. Soc. 354, 4815–4829 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Björner, A., Brenti, F.: Combinatorics of Coxeter groups, Graduate Texts in Mathematics, 231. Springer, New York (2005)

  3. Buch, A.S., Chaput, P.-E., Mihalcea, L.C., Perrin, N.: Positivity of minuscule quantum \(K\)-theory, preprint available at arXiv:2205.08630 [math.AG]

  4. Buch, A.S., Chung, S., Li, C., Mihalcea, L.C.: Euler characteristics in the quantum \(K\)-theory of flag varieties, Selecta Math. (N.S.) 26(2), Paper No. 29, 11 pp (2020)

  5. Buch, A.S., Kresch, A., Tamvakis, H.: Quantum Pieri rules for isotropic Grassmannians. Invent. Math. 178(2), 345–405 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Buch, A.S., Mihalcea, L.C.: Curve neighborhoods of Schubert varieties. J. Differential Geom. 99(2), 255–283 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brion, M.: Lectures on the geometry of flag varieties, Topics in cohomological studies of algebraic varieties, 33–85. Trends Math, Birkhäuser, Basel (2005)

  8. Chaput, P.-E., Manivel, L., Perrin, N.: Quantum cohomology of minuscule homogeneous spaces. Transform. Groups 13(1), 47–89 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Elliott, R.E., Lewers, M.E., Mihalcea, L.C.: Quantum Schubert polynomials for the \(G_2\) flag manifold. Involve 9(3), 437–451 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fulton, W.: Young tableaux. With applications to representation theory and geometry, London Mathematical Society Student Texts, 35. Cambridge University Press, Cambridge, (1997)

  11. Fulton, W., Pandharipande, R.: Notes on stable maps and quantum cohomology, Proc. Sympos. Pure Math. 62, Part 2, Amer. Math. Soc., Providence, RI, (1997)

  12. Fulton, W., Woodward, C.: On the quantum product of Schubert classes. J. Algebraic Geom. 13(4), 641–661 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hu, H., Li, C., Liu, Z.: Codes for Grassmannians of exceptional type by Mathematica 10.0, https://math.sysu.edu.cn/gagp/czli

  14. Humphreys, J.E.: Linear algebraic groups, Graduate Texts in Mathematics 21. Springer-Verlag, New York-Berlin (1975)

  15. Humphreys, J.E.: Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics 9. Springer-Verlag, New York-Berlin (1980)

  16. Muñoz, R., Occhetta, G., Solá Conde, L.E.: Splitting conjectures for uniform flag bundles. Eur. J. Math. 6(2), 430–452 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  17. Muñoz, R., Occhetta, G., Solá Conde, L.E.: Maximal disjoint Schubert cycles in rational homogeneous varieties, to appear in Math. Nachr.; https://doi.org/10.1002/mana.20230003

  18. Naldi, A., Occhetta, G.: Morphisms between Grassmannians. Proc. Japan. Acad. Ser. A 98(10), 101–105 (2022)

    MATH  Google Scholar 

  19. Pan, X.: Triviality and split of vector bundles on rationally connected varieties. Math. Res. Lett. 22(2), 529–547 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Pragacz, P., Ratajski, J.: A Pieri-type theorem for Lagrangian and odd orthogonal Grassmannians. J. Reine Angew. Math. 476, 143–189 (1996)

    MathSciNet  MATH  Google Scholar 

  21. Pragacz, P., Ratajski, J.: A Pieri-type formula for even orthogonal Grassmannians. Fund. Math. 178(1), 49–96 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ravikumar, V.: Triple intersection formulas for isotropic Grassmannians. Algebra Number Theory 9(3), 681–723 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Shifler, R.M., Withrow, C.: Minimum quantum degrees for isotropic Grassmannians in types \(B\) and \(C\). Ann. Comb. 26(2), 453–480 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  24. Stumbo, F.: Minimal length coset representatives for quotients of parabolic subgroups in Coxeter groups. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 3(3), 699–715 (2000)

    MathSciNet  MATH  Google Scholar 

  25. Tamvakis, H.: Quantum cohomology of isotropic Grassmannians, Geometric methods in algebra and number theory, 311–338, Progr. Math., 235, Birkhäuser Boston, Boston, MA, (2005)

  26. Tango, H.: On \((n-1)\)-dimensional projective spaces contained in the Grassmann variety \(Gr(n,1)\). J. Math. Kyoto Univ. 14, 415–460 (1974)

    MathSciNet  MATH  Google Scholar 

  27. Thomas, H., Yong, A.: A combinatorial rule for (co)minuscule Schubert calculus. Adv. Math. 222(2), 596–620 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank Pierre-Emmanuel Chaput, Haibao Duan, Jianxun Hu, Xiaowen Hu, Hua-Zhong Ke, Naichung Conan Leung, Leonardo Constantin Mihalcea, Lei Song and Heng Xie for helpful discussions. The authors are extremely grateful to the anomynous referee for the very careful reading and the quite valuable comments. C. Li is supported by NSFC Grants 12271529 and 11831017, and Guangdong Introducing Innovative and Enterpreneurial Teams No. 2017ZT07X355.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoyang Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

While this manuscript was almost finished, Muñoz, Occhetta and Solá Conde posted a preprint [17] independently proving Theorems 1.1 and 1.2 for rational homogeneous varieties of classical type. Our proof is completely different from theirs, and our main results hold for all Lie types.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, H., Li, C. & Liu, Z. Effective good divisibility of rational homogeneous varieties. Math. Z. 305, 52 (2023). https://doi.org/10.1007/s00209-023-03383-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00209-023-03383-7

Keywords

Mathematics Subject Classification

Navigation