Skip to main content
Log in

Four-dimensional complete gradient shrinking Ricci solitons with half positive isotropic curvature

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

In this paper, we investigate the geometry of 4-dimensional complete gradient shrinking Ricci solitons with half positive isotropic curvature (half PIC) or half nonnegative isotropic curvature. Our first main result is a certain form of curvature estimates for such Ricci shrinkers, including a quadratic curvature lower bound estimate for noncompact ones with half PIC. As a consequence, we obtain a new and more direct proof of the classification result, first observed by Li et al. (Int Math Res Not 3:949–959, 2018), for gradient shrinking Kähler–Ricci solitons of complex dimension two with nonnegative isotropic curvature. Moreover, based on a strong maximum principle argument, we classify 4-dimensional complete gradient shrinking Ricci solitons with half nonnegative isotropic curvature (except the half PIC case). Finally, we treat the half PIC case under an additional assumption on the Ricci tensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement:

Data sharing not applicable to this article as no data sets were generated or analysed during the current study.

Notes

  1. The classifications in dimension \(n\ge 5\) follow from the work of Böhm and Wilking [1].

  2. Later, this was proved in all dimensions \(n\ge 5\) by Brendle and Schoen [2] and Nguyen [42] independently, and this property played an essential role in Brendle-Schoen’s proof of the long standing 1/4-pinching differentiable sphere theorem.

  3. See also [49] for a different proof.

  4. More precisely, the operator \(B:\wedge ^{-}(M)\rightarrow \wedge ^{+}(M)\) is given by \(\mathring{Rc}\bigcirc \!\!\!\!\!\!\wedge \,g\), the Kulkarni-Nomizu product of \(\mathring{Rc}\) and g. In particular, B is identically zero when \((M^4, g)\) is Einstein.

References

  1. Böhm, C., Wilking, B.: Manifolds with positive curvature operators are space forms. Ann. Math. (2) 167(3), 1079–1097 (2008)

    MathSciNet  MATH  Google Scholar 

  2. Brendle, S., Schoen, R.: Manifolds with 1/4-pinched curvature are space forms. J. Am. Math. Soc. 22(1), 287–307 (2009)

    MathSciNet  MATH  Google Scholar 

  3. Brendle, S., Schoen, R.: Classification of manifolds with weakly 1/4-pinched curvatures. Acta Math. 200(1), 1–13 (2008)

    MathSciNet  MATH  Google Scholar 

  4. Brendle, S.: Einstein manifolds with nonnegative isotropic curvature are locally symmetric. Duke Math. J. 151(1), 1–21 (2010)

    MathSciNet  MATH  Google Scholar 

  5. Bamler R.H., Cifarelli C., Conlon R.J., Deruelle A.: A new complete two-dimensional shrinking gradient Kähler–Ricci soliton (preprint) (2022). arXiv:2206.10785

  6. Cao, H.-D.: Existence of Gradient Kähelr–Ricci Solitons, Elliptic and Parabolic Methods in Geometry (Minneapolis, MN, 1994), pp. 1–16. A K Peters, Wellesley (1996)

    Google Scholar 

  7. Cao, H.-D.: Recent progress on Ricci solitons, recent advances in geometric analysis. Adv. Lect. Math. 11, 1–38 (2010)

    MATH  Google Scholar 

  8. Cao, H.-D., Chen, B.-L., Zhu, X.-P.: Recent developments on Hamilton’s Ricci flow, surveys in differential geometry. Surv. Differ. Geom. XII, 47–112 (2008)

    MATH  Google Scholar 

  9. Cao, H.-D., Chen, Q.: On Bach-flat gradient shrinking Ricci solitons. Duke Math. J. 162(6), 1149–1169 (2013)

    MathSciNet  MATH  Google Scholar 

  10. Cao, H.-D., Zhou, D.: On complete gradient shrinking Ricci solitons. J. Differ. Geom. 85(2), 175–185 (2010)

    MathSciNet  MATH  Google Scholar 

  11. Cao, H.-D., Zhu, X.-P.: A complete proof of the Poincaré and geometrization conjectures—application of the Hamilton-Perelman theory of the Ricci flow. Asian J. Math. 10(2), 165–492 (2006)

    MathSciNet  MATH  Google Scholar 

  12. Cao, X., Wang, B., Zhang, Z.: On locally conformally flat gradient shrinking Ricci solitons. Commun. Contemp. Math. 13(2), 269–282 (2011)

    MathSciNet  MATH  Google Scholar 

  13. Cao, X., Zhang, Q.S.: The conjugate heat equation and ancient solutions of the Ricci flow. Adv. Math. 228(5), 2891–2919 (2011)

    MathSciNet  MATH  Google Scholar 

  14. Chen, B.-L.: Strong uniqueness of the Ricci flow. J. Differ. Geom. 82(2), 363–382 (2009)

    MathSciNet  MATH  Google Scholar 

  15. Chen, B.-L., Tang, S.-H., Zhu, X.-P.: Complete classification of compact four manifolds with positive isotropic curvature. J. Differ. Geom. 91(1), 41–80 (2012)

    MathSciNet  MATH  Google Scholar 

  16. Chen, B.-L., Zhu, X.-P.: Ricci flow with surgery on four-manifolds with positive isotropic curvature. J. Differ. Geom. 74(2), 177–264 (2006)

    MathSciNet  MATH  Google Scholar 

  17. Chen, H.: Pointwise 1/4-pinched 4-manifolds. Ann. Glob. Anal. Geom. 9(2), 161–176 (1991)

    MathSciNet  MATH  Google Scholar 

  18. Chen, X., Wang, Y.: On four-dimensional anti-self-dual gradient Ricci solitons. J. Geom. Anal. 25(2), 1335–1343 (2015)

    MathSciNet  MATH  Google Scholar 

  19. Cheng, X., Zhou, D.: Rigidity of four-dimensional gradient shrinking Ricci solitons. J. Reine Angew. Math. (Crelles J.) (2023). https://doi.org/10.1515/crelle-2023-0042

    Article  MATH  Google Scholar 

  20. Cho, J.H., Li, Y.: Ancient solutions to the Ricci flow with isotropic curvature conditions. Math. Ann. 387(1–2), 1009–1041 (2023)

    MathSciNet  MATH  Google Scholar 

  21. Chow, B., Lu, P., Yang, B.: Lower bounds for the scalar curvatures of noncompact gradient Ricci solitons. C. R. Math. Acad. Sci. Paris 349(23–24), 1265–1267 (2011)

    MathSciNet  MATH  Google Scholar 

  22. Conlon, R., Deruelle, A., Sun, S.: Classification results for expanding and shrinking gradient Kähler–Ricci solitons (preprint) (2019). arXiv:1904.00147

  23. Derdzinski, A.: Einstein metrics in dimension four. In: Handbook of Differential Geometry, vol. I, pp. 419–707. North-Holland, Amsterdam (2000)

    Google Scholar 

  24. Eminenti, M., La Nave, G., Mantegazza, C.: Ricci solitons: the equation point of view. Manuscr. Math. 127(3), 345–367 (2008)

    MathSciNet  MATH  Google Scholar 

  25. Enders, J., Müller, R., Topping, P.: On type-I singularities in Ricci flow. Commun. Anal. Geom. 19(5), 905–922 (2011)

    MathSciNet  MATH  Google Scholar 

  26. Feldman, F., Ilmanen, T., Knopf, D.: Rotationally symmetric shrinking and expanding gradient Kähler Ricci solitons. J. Differ. Geom. 65(2), 169–209 (2003)

    MATH  Google Scholar 

  27. Ferńandez-López, M., García-Río, E.: Rigidity of shrinking Ricci solitons. Math. Z. 269(1–2), 461–466 (2011)

    MathSciNet  MATH  Google Scholar 

  28. Ferńandez-López, M., García-Río, E.: On gradient Ricci solitons with constant scalar curvature. Proc. Am. Math. Soc. 144(1), 369–378 (2016)

    MathSciNet  MATH  Google Scholar 

  29. Hamilton, R.: Four-manifolds with positive curvature operator. J. Differ. Geom. 24(2), 153–179 (1986)

    MathSciNet  MATH  Google Scholar 

  30. Hamilton, R.: The Ricci flow on surfaces. Contemp. Math. 71, 237–261 (1988)

    MathSciNet  Google Scholar 

  31. Hamilton, R.: The formation of singularities in the Ricci flow. Surv. Differ. Geometry II, 7–136 (1993)

    MATH  Google Scholar 

  32. Hamilton, R.: Four-manifolds with positive isotropic curvature. Commun. Anal. Geom. 5(1), 1–92 (1997)

    MathSciNet  MATH  Google Scholar 

  33. Ivey, T.: Ricci solitons on compact three-manifolds. Differ. Geom. Appl. 3, 301–307 (1993)

    MathSciNet  MATH  Google Scholar 

  34. Koiso, N.: On rotationally symmetric Hamilton’s equation for Kähler-Einstein metrics, recent topics in differential and analytic geometry. Adv. Stud. Pure Math. 18–I, 327–337 (1990)

    MATH  Google Scholar 

  35. Li, X., Ni, L., Wang, K.: Four-dimensional gradient shrinking solitons with positive isotropic curvature. Int. Math. Res. Not. 3, 949–959 (2018)

    MathSciNet  MATH  Google Scholar 

  36. Li, Y., Wang, B.: On Kähler Ricci shrinker surfaces (preprint) (2023). arXiv:2301.09784

  37. Micallef, M.J., Moore, J.D.: Minimal two-spheres and the topology of manifolds with positive curvature on totally isotropic two-planes. Ann. Math. (2) 127(1), 199–227 (1988)

    MathSciNet  MATH  Google Scholar 

  38. Micallef, M.J., Wang, M.Y.: Metrics with nonnegative isotropic curvature. Duke Math. J. 72, 649–672 (1993)

    MathSciNet  MATH  Google Scholar 

  39. Munteanu, O., Sesum, N.: On gradient Ricci solitons. J. Geom. Anal. 23(2), 539–561 (2013)

    MathSciNet  MATH  Google Scholar 

  40. Munteanu, O., Wang, J.: Positively cured shrinking Ricci solitons are compact. J. Differ. Geom. 106(3), 499–505 (2017)

    MATH  Google Scholar 

  41. Naber, A.: Noncompact shrinking four solitons with nonnegative curvature. J. Reine Angew. Math. 645, 125–153 (2010)

    MathSciNet  MATH  Google Scholar 

  42. Nguyen, H.T.: Isotropic curvature and the Ricci flow. Int. Math. Res. Not. 3(3), 536–558 (2010)

    MathSciNet  MATH  Google Scholar 

  43. Ni, L.: Ancient solutions to Kähler–Ricci flow. Math. Res. Lett. 12(5–6), 633–653 (2005)

    MathSciNet  MATH  Google Scholar 

  44. Ni, L., Wallach, N.: On a classification of gradient shrinking solitons. Math. Res. Lett. 15(5), 941–955 (2008)

    MathSciNet  MATH  Google Scholar 

  45. Petersen, P., Wylie, W.: On the classification of gradient Ricci solitons. Geom. Topol. 14(4), 2277–2300 (2010)

    MathSciNet  MATH  Google Scholar 

  46. Perelman, G.: The entropy formula for the Ricci flow and its geometric applications (2002). arXiv:0211159 [math.DG]

  47. Perelman, G.: Ricci flow with surgery on three manifolds (2003). arXiv:0303109 [math.DG]

  48. Pigola, S., Rimoldi, M., Setti, A.G.: Remarks on non-compact gradient Ricci solitons. Math. Z. 268(3–4), 777–790 (2011)

    MathSciNet  MATH  Google Scholar 

  49. Richard, T., Seshadri, H.: Positive isotropic curvature and self-duality in dimension 4. Manuscr. Math. 149(3–4), 443–457 (2016)

    MathSciNet  MATH  Google Scholar 

  50. Wang, X.-J., Zhu, X.: Kähler–Ricci solitons on toric manifolds with positive first Chern class. Adv. Math. 188(1), 87–103 (2004)

    MathSciNet  MATH  Google Scholar 

  51. Wu, J.-Y., Wu, P., Wylie, W.: Gradient shrinking Ricci solitons of half harmonic Weyl curvature. Calc. Var. Partial Differ. Equ. 57(Paper No. 141, 5), 15 (2018)

    MathSciNet  MATH  Google Scholar 

  52. Wu, P.: A Weitzenböck formula for canonical metrics on four-manifolds. Trans. Am. Math. Soc. 369(2), 1079–1096 (2017)

    MATH  Google Scholar 

  53. Zhang, Z.-H.: Gradient shrinking solitons with vanishing Weyl tensor. Pac. J. Math. 242(1), 189–200 (2009)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Professor Richard Hamilton and Professor Lei Ni for their interests in our work. We also like to thank Dr. Jiangtao Yu for discussions and the anonymous referee for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junming Xie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Huai-Dong Cao research partially supported by Simons Foundation Collaboration Grant #586694.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, HD., Xie, J. Four-dimensional complete gradient shrinking Ricci solitons with half positive isotropic curvature. Math. Z. 305, 25 (2023). https://doi.org/10.1007/s00209-023-03356-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00209-023-03356-w

Navigation