Skip to main content
Log in

Pluriclosed star split Hermitian metrics

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We introduce a class of Hermitian metrics, that we call pluriclosed star split, generalising both the astheno-Kähler metrics of Jost and Yau and the \((n-2)\)-Gauduchon metrics of Fu-Wang-Wu on complex manifolds. They have links with Gauduchon and balanced metrics through the properties of a smooth function associated with any Hermitian metric. After pointing out several examples, we generalise the property to pairs of Hermitian metrics and to triples consisting of a holomorphic map between two complex manifolds and two Hermitian metrics, one on each of these manifolds. Applications include an attack on the Fino-Vezzoni conjecture predicting that any compact complex manifold admitting both SKT and balanced metrics must be Kähler, that we answer affirmatively under extra assumptions. We also introduce and study a Laplace-like differential operator of order two acting on the smooth \((1,\,1)\)-forms of a Hermitian manifold. We prove it to be elliptic and we point out its links with the pluriclosed star split metrics and pairs defined in the first part of the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The author is grateful to L. Ugarte for pointing out this result and this reference to him.

  2. The author is grateful to L. Ugarte for pointing out this function to him.

References

  1. Angella, D.: The cohomologies of the Iwasawa manifold and of its small deformations. J. Geom. Anal. 3, 1355–1378 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Calabi, E., Eckmann, B.: A class of compact, complex manifolds which are not algebraic. Ann. Math. 58, 494–500 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  3. Demailly, J.-P.: Sur l’identité de Bochner-Kodaira-Nakano en géométrie hermitienne—Séminaire d’analyse. In: Lelong, P., Dolbeault, P., Skoda, H. (eds.) 1983/1984, Lecture Notes in Math, vol. 1198, pp. 88–97. Springer, Berlin (1986)

    Google Scholar 

  4. Demailly, J.-P.: Complex Analytic and Algebraic Geometry—http://www-fourier.ujf-grenoble.fr/~demailly/books.html

  5. Dinew, S., Popovici, D.: A generalised volume invariant for Aeppli cohomology classes of Hermitian-symplectic metrics. Adv. Math. (2021). https://doi.org/10.1016/j.aim.2021.108056

    Article  MathSciNet  MATH  Google Scholar 

  6. Dinew, S., Popovici, D.: A variational approach to SKT and balanced metrics. arXiv e-print DG arXiv:2209.12813v1

  7. Fino, A., Ugarte, L.: On generalized Gauduchon metrics. Proc. Edinb. Math. Soc. 56, 733–753 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fino, A., Vezzoni, L.: Special Hermitian metrics on compact solvmanifolds. J. Geom. Phys. 91, 40–53 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fu, J., Wang, Z., Wu, D.: Semilinear equations, the \(\gamma _k\) function and generalized Gauduchon metrics. J. Eur. Math. Soc. 15, 659–680 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gauduchon, P.: Le théorème de l’excentricité nulle. C. R. Acad. Sci. Paris Sér. A 285, 387–390 (1977)

    MathSciNet  MATH  Google Scholar 

  11. Gauduchon, P.: Fibrés hermitiens à endomorphisme de Ricci non négatif. Bull. Soc. Math. France 105, 113–140 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  12. Howe, P.S., Papadopoulos, G.: Twistor spaces for HKT manifolds. Phys. Lett. B 379, 80 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ivanov, S., Papadopoulos, G.: Vanishing theorems on \((l/k)\)-strong Kähler manifolds with Torsion. Adv. Math. 237, 147–164 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jost, J., Yau, S.-T.: A nonlinear elliptic system for maps from Hermitian to Riemannian manifolds and rigidity theorems in Hermitian geometry. Acta Math. 170(2), 221–254 (1993). (Correction in: “A Nonlinear Elliptic System for Maps from Hermitian to Riemannian Manifolds and Rigidity Theorems in Hermitian Geometry”, Acta Math. 173(2), 307 (1994))

  15. Matsuo, K., Takahashi, T.: On compact Astheno–Kähler manifolds. Colloq. Math. 89, 213–221 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Nakamura, I.: Complex parallelisable manifolds and their small deformations. J. Diff. Geom. 10, 85–112 (1975)

    MathSciNet  MATH  Google Scholar 

  17. Popovici, D.: Aeppli cohomology classes associated with Gauduchon metrics on compact complex manifolds. Bull. Soc. Math. Fr. 143(3), 1–37 (2015)

    MathSciNet  MATH  Google Scholar 

  18. Siu, Y.-T.: The complex-analyticity of harmonic maps and the strong rigidity of compact Kähler manifolds. Ann. Math. 112(1), 73–111 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  19. Tardini, N., Tomassini, A.: On geometric Bott–Chern formality and deformations. Ann. Mat. (2017). https://doi.org/10.1007/s10231-016-0575-6

    Article  MATH  Google Scholar 

  20. Voisin, C.: Hodge Theory and Complex Algebraic Geometry. I. Cambridge Studies in Advanced Mathematics, vol. 76. Cambridge University Press, Cambridge (2002)

    Google Scholar 

Download references

Acknowledgements

The author is grateful to S. Dinew and L. Ugarte for useful comments on this text, as well as to the referee for their careful reading of the preprint and for interesting suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Popovici.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Commutation relations

Appendix: Commutation relations

We briefly recall here some standard formulae that were used throughout the paper.

Let \((X,\,\omega )\) be a compact complex Hermitian manifold. Recall the following standard Hermitian commutation relations ( [3], see also [ [4], VII, \(\S .1\)]):

$$\begin{aligned}{} & {} \mathrm{(i)}\,\,(\partial + \tau )^{\star } = i\,[\Lambda ,\,{{\bar{\partial }}}]; \hspace{3ex} \mathrm{(ii)}\,\,({{\bar{\partial }}} + {{\bar{\tau }}})^{\star } = - i\,[\Lambda ,\,\partial ]; \nonumber \\{} & {} \mathrm{(iii)}\,\, \partial + \tau = -i\,[{{\bar{\partial }}}^{\star },\,L]; \hspace{3ex} (iv)\,\, {{\bar{\partial }}} + {{\bar{\tau }}} = i\,[\partial ^{\star },\,L], \end{aligned}$$
(95)

where the upper symbol \(\star \) stands for the formal adjoint w.r.t. the \(L^2\) inner product induced by \(\omega \), \(L=L_{\omega }:=\omega \wedge \cdot \) is the Lefschetz operator of multiplication by \(\omega \), \(\Lambda =\Lambda _{\omega }:=L^{\star }\) and \(\tau _\omega =\tau :=[\Lambda ,\,\partial \omega \wedge \cdot ]\) is the torsion operator (of order zero and type \((1,\,0)\)) associated with the metric \(\omega \).

Other standard formulae (see e.g. [20]) are the following:

$$\begin{aligned}{} & {} \mathrm{(i)}\,\, [\Lambda ,\,L] = (n-k)\,\text{ Id } \hspace{5ex} \text{ on }\hspace{1ex} k\text{-forms, } \text{ for } \text{ every } \text{ non-negative } \text{ integer }\hspace{1ex} k; \nonumber \\{} & {} \mathrm{(ii)}\,\, [L^r,\,\Lambda ] = r(k-n+r-1)\,L^{r-1} \hspace{5ex} \text{ on }\hspace{1ex} k\text{-forms, } \text{ for } \text{ all } \text{ integers }\hspace{1ex} k\ge 0, r\ge 2; \nonumber \\{} & {} \mathrm{(iii)}\,\,\star \,L = \Lambda \,\star \hspace{3ex}\text{ and }\hspace{3ex} \star \,\Lambda = L\,\star . \end{aligned}$$
(96)

We also used the following result involving again the torsion operator \(\tau _\omega \).

Lemma 1.63

Let \((X,\,\omega )\) be a compact complex Hermitian manifold with \(\text{ dim}_{\mathbb {C}}X=n\). The following identities hold:

$$\begin{aligned} -\frac{1}{2}\,{{\bar{\tau }}}_\omega ^\star \omega {\mathop {=}\limits ^{(i)}} {{\bar{\partial }}}^\star _\omega \omega {\mathop {=}\limits ^{(ii)}} i\,\Lambda _\omega (\partial \omega ). \end{aligned}$$
(97)

In particular, \(\omega \) is balanced if and only if \({{\bar{\tau }}}_\omega ^\star \omega =0\).

Proof

\(\bullet \) To prove identity (i) in (97), we will show that the multiplication operators by the \((1,\,0)\)-forms \({{\bar{\tau }}}^\star \omega \) and \(-2{{\bar{\partial }}}^\star \omega \) acting on functions, namely

$$\begin{aligned} {{\bar{\tau }}}^\star \omega \wedge \cdot , \hspace{1ex} -2{{\bar{\partial }}}^\star \omega \wedge \cdot :C^\infty _{0,\,0}(X,\,{\mathbb {C}})\longrightarrow C^\infty _{1,\,0}(X,\,{\mathbb {C}}), \end{aligned}$$

coincide by showing that their adjoints

$$\begin{aligned} ({{\bar{\tau }}}^\star \omega \wedge \cdot )^\star , \hspace{1ex} (-2{{\bar{\partial }}}^\star \omega \wedge \cdot )^\star :C^\infty _{1,\,0}(X,\,{\mathbb {C}})\longrightarrow C^\infty _{0,\,0}(X,\,{\mathbb {C}}) \end{aligned}$$

coincide.

Let \(\alpha \in C^\infty _{1,\,0}(X,\,{\mathbb {C}})\) and \(g\in C^\infty _{0,\,0}(X,\,{\mathbb {C}})\) be arbitrary. We have:

$$\begin{aligned} \langle \langle ({{\bar{\partial }}}^\star \omega \wedge \cdot )^\star \alpha ,\,g \rangle \rangle = \langle \langle {\bar{g}}\alpha ,\,{{\bar{\partial }}}^\star \omega \rangle \rangle = \langle \langle {{\bar{\partial }}}({\bar{g}}\alpha ),\,\omega \rangle \rangle = \int \limits _X{{\bar{\partial }}}({\bar{g}}\alpha )\wedge \star \omega = \int \limits _X{\bar{g}}\alpha \wedge {{\bar{\partial }}}\omega _{n-1},\nonumber \\ \end{aligned}$$
(98)

where we put \(\omega _{n-1}:=\omega ^{n-1}/(n-1)!\) and we used the standard identity \(\star \omega = \omega _{n-1}\).

Meanwhile, we have:

$$\begin{aligned} \langle \langle ({{\bar{\tau }}}^\star \omega \wedge \cdot )^\star \alpha ,\,g \rangle \rangle= & {} \langle \langle {\bar{g}}\alpha ,\,{{\bar{\tau }}}^\star \omega \rangle \rangle = \langle \langle {\bar{g}}\,{{\bar{\tau }}}(\alpha ),\,\omega \rangle \rangle = \langle \langle {\bar{g}}\,\Lambda ({{\bar{\partial }}}\omega \wedge \alpha ),\,\omega \rangle \rangle \nonumber \\= & {} \langle \langle {{\bar{\partial }}}\omega \wedge \alpha ,\,g\,\omega ^2\rangle \rangle = \int \limits _X{{\bar{\partial }}}\omega \wedge \alpha \wedge \star ({\bar{g}}\omega ^2) = -2\,\int \limits _X{\bar{g}}\alpha \wedge {{\bar{\partial }}}\omega \wedge \omega _{n-2} \nonumber \\= & {} -2\,\int \limits _X{\bar{g}}\alpha \wedge {{\bar{\partial }}}\omega _{n-1}, \end{aligned}$$
(99)

where for the third identity on the first line we used the definition \({{\bar{\tau }}} = [\Lambda ,\,{{\bar{\partial }}}\omega \wedge \cdot ]\) of \({{\bar{\tau }}}\) and the fact that \(\Lambda (\alpha )=0\) for bidegree reasons, while for the third identity on the second line we used the standard identity \(\star \omega _2 = \omega _{n-2}\), where \(\omega _2:=\omega ^2/2!\).

Comparing (98) and (99), we get \(\langle \langle ({{\bar{\tau }}}^\star \omega \wedge \cdot )^\star \alpha ,\,g \rangle \rangle = -2\,\langle \langle ({{\bar{\partial }}}^\star \omega \wedge \cdot )^\star \alpha ,\,g \rangle \rangle \) for all \(\alpha \) and g. Hence \(({{\bar{\tau }}}^\star \omega \wedge \cdot )^\star = -2\,({{\bar{\partial }}}^\star \omega \wedge \cdot )^\star \), which proves (i) of (97).

\(\bullet \) To prove identity (ii) in (97), we start from the Hermitian commutation relation (ii) in (95):

$$\begin{aligned} {[}\Lambda ,\,\partial ] = i\,({{\bar{\partial }}}^\star +{{\bar{\tau }}}^\star ) \end{aligned}$$

that we apply to \(\omega \). We get the equivalent identities:

$$\begin{aligned} {[}\Lambda ,\,\partial ]\,\omega = i{{\bar{\partial }}}^\star \omega + i{{\bar{\tau }}}^\star \omega \iff \Lambda (\partial \omega ) - \partial (\Lambda \omega ) = -i{{\bar{\partial }}}^\star \omega \iff \Lambda (\partial \omega ) = -i{{\bar{\partial }}}^\star \omega , \end{aligned}$$

the last of which is (ii) of (97), where for the first equivalence we used the identity \({{\bar{\tau }}}^\star \omega = -2\,{{\bar{\partial }}}^\star \omega \) proved above as (i) in (97), while for the second equivalence we used the fact that \(\Lambda \omega = n\), hence \(\partial (\Lambda \omega )=0\). \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popovici, D. Pluriclosed star split Hermitian metrics. Math. Z. 305, 7 (2023). https://doi.org/10.1007/s00209-023-03344-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00209-023-03344-0

Navigation