Skip to main content
Log in

Cohomological jump loci and duality in local algebra

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

In this article a higher order support theory, called the cohomological jump loci, is introduced and studied for dg modules over a Koszul extension of a local dg algebra. The generality of this setting applies to dg modules over local complete intersection rings, exterior algebras and certain group algebras in prime characteristic. This family of varieties generalizes the well-studied support varieties in each of these contexts. We show that cohomological jump loci satisfy several interesting properties, including being closed under (Grothendieck) duality. The main application of this support theory is that over a local ring the homological invariants of Betti degree and complexity are preserved under duality for finitely generated modules having finite complete intersection dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avramov, L.L.: Modules of finite virtual projective dimension. Invent. Math. 96(1), 71–101 (1989). (MR 981738)

    Article  MathSciNet  MATH  Google Scholar 

  2. Avramov, L.L.: Local rings over which all modules have rational Poincaré series. J. Pure Appl. Algebra 91(1–3), 29–48 (1994). (MR 1255922)

    Article  MathSciNet  MATH  Google Scholar 

  3. Avramov, L.L., Buchweitz, R.-O.: Homological algebra modulo a regular sequence with special attention to codimension two. J. Algebra 230(1), 24–67 (2000). (MR 1774757)

    Article  MathSciNet  MATH  Google Scholar 

  4. Avramov, L.L., Buchweitz, R.-O.: Support varieties and cohomology over complete intersections. Invent. Math. 142(2), 285–318 (2000). (MR 1794064)

    Article  MathSciNet  MATH  Google Scholar 

  5. Avramov, L.L., Buchweitz, R.-O., Iyengar, S.B., Miller, C.: Homology of perfect complexes. Adv. Math. 223(5), 1731–1781 (2010). (MR 2592508)

    Article  MathSciNet  MATH  Google Scholar 

  6. Avramov, L.L., Gasharov, V.N., Peeva, I.V.: Complete intersection dimension. Inst. Hautes Études Sci. Publ. Math. 86(1997), 67–114 (1998). (MR 1608565)

    MathSciNet  MATH  Google Scholar 

  7. Avramov, L.L., Grayson, D.R.: Resolutions and cohomology over complete intersections, Computations in algebraic geometry with Macaulay 2. Algor. Comput. Math. 8, 131–178 (2002). (MR 1949551)

    MATH  Google Scholar 

  8. Avramov, L.L., Iyengar, S.B.: Constructing modules with prescribed cohomological support. Ill. J. Math. 51(1), 1–20 (2007). (MR 2346182)

    MathSciNet  MATH  Google Scholar 

  9. Avramov, L.L., Iyengar, S.B.: Cohomology over complete intersections via exterior algebras, triangulated categories. Lond. Math. Soc. Lect. Note Ser. 375, 52–75 (2010). (MR 2681707)

    MATH  Google Scholar 

  10. Avramov, L.L., Iyengar, S.B.: Bass numbers over local rings via stable cohomology. J. Commut. Algebra 5(1), 5–15 (2013). (MR 3084119)

    Article  MathSciNet  MATH  Google Scholar 

  11. Avramov, L.L., Iyengar, S.B.: Restricting homology to hypersurfaces geometric and topological aspects of the representation theory of finite group. Springer proceedings of mathematical statistics, vol. 242, pp. 1–23. Springer, Cham (2018). (MR 3901154)

    Google Scholar 

  12. Avramov, L.L., Sun, L.-C.: Cohomology operators defined by a deformation. J. Algebra 204(2), 684–710 (1998). (MR 1624432)

    Article  MathSciNet  MATH  Google Scholar 

  13. Benson, D., Iyengar, S.B., Krause, H.: Local cohomology and support for triangulated categories. Ann. Sci. Éc. Norm. Supér. 41(4), 573–619 (2008). (MR 2489634)

    MathSciNet  MATH  Google Scholar 

  14. Bourbaki, N.: Éléments de mathématique Algèbre commutative. Chapitres 8 et 9. Springer, Berlin (2006). (MR 2284892)

    MATH  Google Scholar 

  15. Briggs, B., Grifo, E., Pollitz, J.: Constructing nonproxy small test modules for the complete intersection property. Nagoya Math. J. 246, 412 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  16. Briggs, B., Iyengar, S.B., Letz, J.C., Pollitz, J.: Locally complete intersection maps and the proxy small property. Int. Math. Res. Not. 2022(16), 12625–52 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  17. Buchweitz, R.O.: Maximal Cohen-Macaulay modules and Tate cohomology. American Mathematical Society, Washington (2021)

    Book  MATH  Google Scholar 

  18. Budur, N., Wang, B.: Recent results on cohomology jump loci, Hodge theory and \(L^2\)-analysis. Adv. Lect. Math. (ALM) 39, 207–243 (2017). (MR 3751292)

    MATH  Google Scholar 

  19. Burke, J., Walker, M.E.: Matrix factorizations in higher codimension. Trans. Am. Math. Soc. 367(5), 3323–3370 (2015). (MR 3314810)

    Article  MathSciNet  MATH  Google Scholar 

  20. Carlson, J.F., Iyengar, S.B.: Thick subcategories of the bounded derived category of a finite group. Trans. Am. Math. Soc. 367(4), 2703–2717 (2015). (MR 3301878)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dao, H.: Asymptotic behavior of tor over complete intersections and applications, arXiv preprint arXiv:0710.5818 (2007). https://arxiv.org/abs/0710.5818

  22. Eisenbud, D.: Homological algebra on a complete intersection, with an application to group representations. Trans. Am. Math. Soc. 260(1), 35–64 (1980). (MR 570778)

    Article  MathSciNet  MATH  Google Scholar 

  23. Eisenbud, D., Peeva, I., Schreyer, F.-O.: Quadratic complete intersections. J. Algebra 571, 15–31 (2021). (MR 4200706)

    Article  MathSciNet  MATH  Google Scholar 

  24. Félix, Y., Halperin, S., Thomas, J.-C.: Rational homotopy theory. In: Graduate texts in mathematics. Springer-Verlag, New York (2001) . (MR 1802847)

    Google Scholar 

  25. Greenlees, J.P., Stevenson, G.: Morita theory and singularity categories. Adv. Math. 13(365), 107055 (2020). (MR 4065715)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gulliksen, T.H.: A change of ring theorem with applications to Poincaré series and intersection multiplicity. Math. Scand. 34, 167–183 (1974). (MR 364232)

    Article  MathSciNet  MATH  Google Scholar 

  27. Iyengar, S.B., Walker, M.E.: Examples of finite free complexes of small rank and small homology. Acta Math. 221(1), 143–158 (2018). (MR 1972252)

    Article  MathSciNet  MATH  Google Scholar 

  28. Jorgensen, D.A.: Support sets of pairs of modules. Pac. J. Math. 207(2), 393–409 (2002). (MR 1972252)

    Article  MathSciNet  MATH  Google Scholar 

  29. Jorgensen, D.A., Sega, L.M.: Asymmetric complete resolutions and vanishing of ext overGorenstein rings. Int. Math. Res. Not. 2005(56), 3459–77 (2005). (MR 2200585)

    Article  MATH  Google Scholar 

  30. Leuschke, G.J., Wiegand, R.: Cohen-Macaulay representations. Mathematical surveys and monographs, vol. 181. American Mathematical Society, Providence (2012). (MR 2919145)

    MATH  Google Scholar 

  31. Liu, J., Josh, P.: Duality and symmetry of complexity over complete intersections via exterior homology. Proc. Am. Math. Soc. 149(2), 619–631 (2021). (MR 4198070)

    Article  MathSciNet  MATH  Google Scholar 

  32. Matsumura, H.: Commutative ring theory. Cambridge studies in advanced mathematics, vol. 8. Cambridge University Press, Cambridge (1986). (Translated from the Japanese by M. Reid. MR879273)

    Google Scholar 

  33. Mehta, V.B.: Endomorphisms of complexes and modules over golod rings, ProQuest LLC, Ann Arbor, MI, 1976, Thesis (Ph.D.). University of California, Berkeley (1976). (MR 2626509)

    Google Scholar 

  34. Pollitz, J.: The derived category of a locally complete intersection ring. Adv. Math. 354, 106752 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  35. Pollitz, J.: Cohomological supports over derived complete intersections and local rings. Math. Z. 299(3–4), 2063–101 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  36. Sather-Wagstaff, S.: Complete intersection dimensions for complexes. J. Pure Appl. Algebra 190(1–3), 267–290 (2004). (MR 2043332)

    Article  MathSciNet  MATH  Google Scholar 

  37. Shamash, J.: The Poincaré series of a local ring. J. Algebra 12, 453–470 (1969). (MR 241411)

    Article  MathSciNet  MATH  Google Scholar 

  38. Stevenson, G.: Duality for bounded derived categories of complete intersections. Bull. Lond. Math. Soc. 46(2), 245–257 (2014). (MR 3194744)

    Article  MathSciNet  MATH  Google Scholar 

  39. Weibel, C.A.: An introduction to homological algebra, vol. 38. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josh Pollitz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

For part of this work the Benjamin Briggs was hosted by the Mathematical Sciences Research Institute in Berkeley, California, supported by the National Science Foundation under Grant No. 1928930. The Daniel McCormick and Josh Pollitz worked on this project while supported by the RTG grant from the National Science Foundation No. 1840190, as well as being partly supported by the National Science Foundation under Grants No. 2001368 and 2002173, respectively

This work has benefited significantly from numerous comments of Srikanth Iyengar, for which we are grateful. We also thank a referee for helpful comments on the manuscript.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Briggs, B., McCormick, D. & Pollitz, J. Cohomological jump loci and duality in local algebra. Math. Z. 304, 30 (2023). https://doi.org/10.1007/s00209-023-03276-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00209-023-03276-9

Keywords

Mathematics Subject Classification

Navigation