Skip to main content
Log in

A Type B analog of the Whitehouse representation

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We give a Type B analog of Whitehouse’s lifts of the Eulerian representations from \(S_n\) to \(S_{n+1}\) by introducing a family of \(B_{n}\)-representations that lift to \(B_{n+1}\). As in Type A, we interpret these representations combinatorially via a family of orthogonal idempotents in the Mantaci-Reutenauer algebra, and topologically as the graded pieces of the cohomology of a certain \({{\,\mathrm{\mathbb {Z}}\,}}_{2}\)-orbit configuration space of \({{\,\mathrm{\mathbb {R}}\,}}^{3}\). We show that the lifted \(B_{n+1}\)-representations also have a configuration space interpretation, and further parallel the Type A story by giving analogs of many of its notable properties, such as connections to equivariant cohomology and the Varchenko-Gelfand ring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Notes

  1. In fact, in [9], Bergeron–Bergeron–Howlett–Taylor defined analogous idempotents for any finite Coxeter group.

  2. The word hidden refers to the fact that there is not an obvious \(S_{n+1}\) action on \({{\,\textrm{Conf}\,}}_n({{\,\mathrm{\mathbb {R}}\,}}^{d})\).

  3. The notation \({{\,\textrm{in}\,}}_{\deg }({\mathcal {Q}})\) refers to the fact that \({{\,\textrm{in}\,}}_{\deg }({\mathcal {Q}})\) is an initial ideal for some degree (partial) ordering on monomials. This will be rigorously defined and discussed in Sect. 3.1.

  4. In fact (2.1.4) holds for any odd \(d \ge 3\) by replacing \(H^{2k}{{\,\textrm{Conf}\,}}_{n}({{\,\mathrm{\mathbb {R}}\,}}^{d})\) with \(H^{(d-1)k}{{\,\textrm{Conf}\,}}_{n}({{\,\mathrm{\mathbb {R}}\,}}^{d})\).

  5. We think of this as a recursion in the sense that the formula relates the representation \(E_{n}^{(k)}\) (which lifts to \(F_{n+1}^{(k)}\)) to the representation \(F_{n}^{(k)}\) (which restricts to \(E_{n-1}^{(k)}\)).

  6. The terminology of “hands” and “fingers” originates in Hélène Barcelo’s thesis [5, Thm 2.1] and was later used in Barcelo–Goupil [7], both in the context of describing an nbc-basis. Such bases arise in the study of matroids. While we are not in the matroid (e.g. hyperplane) setting, because our description of \({\mathcal {N}}\) uses the hand/finger description, we may refer to it basis as an nbc-basis nonetheless.

  7. In [24], Feichtner–Ziegler give a presentation of \(H^{*}\mathcal {Z}_{n}^d\) for \(d \ge 2\). However, their computation of the action of \(B_n\) on the generators of \(H^{*}\mathcal {Z}_{n}^d\) has an error [24, Lemma 7(iv)]. Xicoténcatl also gives a presentation of \(H^{*}\mathcal {Z}_{n}^d\), which agrees with our presentation; however his work does not explicitly compute the action of \(B_n\) on the generators of \(H^{*}\mathcal {Z}_{n}^d\). We will see in Proposition 4.6 that the \(B_n\)-action on \(H^{*}\mathcal {Z}_{n}^d\) is delicate, and so we include all the details of our computations for completeness.

  8. They further prove (with a bit more work) that the \(d=2\) case is also torsion free and satisfies (4.1.2).

  9. The proof of Theorem 5.10 does not rely on the remaining results in § 4. In particular, all subsequent work in §4 will focus on computing the presentation of \(H^{*}\mathcal {Z}_{n}^3\). Theorem 5.10 will be proved using equivariant formality, which we will see follows from the Hilbert series for \(H^{*}\mathcal {Z}_{n}^3\) given in (4.1.2).

References

  1. Aguiar, M., Mahajan, S.: Topics in hyperplane arrangements, volume 226. Am. Math. Soc., (2017)

  2. Aguiar, M., Bergeron, N., Nyman, K.: The peak algebra and the descent algebras of types B and D. Trans. Am. Math. Soc. 356(7), 2781–2824 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Anderson, D.: Introduction to equivariant cohomology in algebraic geometry. Contributions to algebraic geometry, EMS Ser. Congr. Rep, pages 71–92, (2012)

  4. Arnol’d, I.: Vladimir. The cohomology ring of the group of dyed braids. Mat. Zametki 5, 227–231 (1969)

    MathSciNet  Google Scholar 

  5. Barcelo, H.M.-L.: On the Action of the Symmetric Group on the Free Lie Algebra and on the Homology and Cohomology of the Partition Lattice. PhD thesis, University of California, San Diego, (1988)

  6. Barcelo, H.: On the action of the symmetric group on the free Lie algebra and the partition lattice. J. Combin. Theory Ser. A 55(1), 93–129 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  7. Barcelo, H., Ihrig, E.: Lattices of parabolic subgroups in connection with hyperplane arrangements. J. Algebraic Combin. 9(1), 5–24 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bergeron, F., Bergeron, N.: Orthogonal idempotents in the descent algebra of \(B_n\) and applications. J. Pure Appl. Algebra 79(2), 109–129 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bergeron, F., Bergeron, N., Howlett, R.B., Taylor, D.E.: A decomposition of the descent algebra of a finite Coxeter group. J. Algebraic Combin. 1(1), 23–44 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Berget, A.: Internal zonotopal algebras and the monomial reflection groups \(G (m, 1, n)\). J. Combin. Theory Ser. A 159, 1–25 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bibby, C., Gadish, N.: A generating function approach to new representation stability phenomena in orbit configuration spaces. arXiv preprint arXiv:1911.02125, (2019)

  12. Bibby, C.: Representation stability for the cohomology of arrangements associated to root systems. J. Algebraic Combin. 48(1), 51–75 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bibby, C., Gadish, N.: Combinatorics of orbit configuration spaces. Int. Math. Res. Not. 2022(9), 6903–6947 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bjorner, A., Brenti, F.: Combinatorics of Coxeter groups, vol. 231. Springer Science & Business Media, New York (2006)

    MATH  Google Scholar 

  15. Bonnafé, C., Hohlweg, C.: Generalized descent algebra and construction of irreducible characters of hyperoctahedral groups. In Annales de l’institut Fourier 56, 131–181 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Brauner, S.: Eulerian representations for real reflection groups. J. Lond. Math. Soc. 105(1), 412–444 (2022)

    Article  MathSciNet  Google Scholar 

  17. Casto, K.: \(\text{FI}_G\)-modules, orbit configuration spaces, and complex reflection groups. arXiv preprint arXiv:1608.06317, (2016)

  18. Cohen, F.R., Lada, T.J., May, P.J.: The homology of iterated loop spaces, vol. 533. Springer, New York (2007)

    MATH  Google Scholar 

  19. Denham, G., Suciu, A.I.: Local systems on complements of arrangements of smooth, complex algebraic hypersurfaces. In: Forum of Mathematics, Sigma, volume 6. Cambridge University Press, (2018)

  20. Dorpalen-Barry, G., Proudfoot, N., Wang, J.: Equivariant cohomology and conditional oriented matroids. arXiv preprint arXiv:2208.04855, (2022)

  21. Dorpalen-Barry, G.: The Varchenko-Gel’fand ring of a cone. J. Algebra, (2022)

  22. Douglass, J.M., Tomlin, D.E.: A decomposition of the group algebra of a hyperoctahedral group. Math. Z. 290(3–4), 735–758 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Early, N., Reiner, V.: On configuration spaces and Whitehouse’s lifts of the Eulerian representations. J. Pure Appl. Algebra, (2019)

  24. Feichtner, E.M., Ziegler, G.M.: On orbit configuration spaces of spheres. Topol. Appl. 118(1–2), 85–102 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gaiffi, G.: The actions of \({S}_{n+ 1}\) and \({S}_{n}\) on the cohomology ring of a Coxeter arrangement of type \({A}_{n-1}\). Manuscr. Math. 91(1), 83–94 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  26. Garsia, A.M., Reutenauer, C.: A decomposition of Solomon’s descent algebra. Adv. Math. 77(2), 189–262 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gerstenhaber, M., Schack, S.D.: A Hodge-type decomposition for commutative algebra cohomology. J. Pure Appl. Algebra 48(1–2), 229–247 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  28. Getzler, E., Kapranov, M.: Cyclic operads and cyclic homology. Geometry, Topology and Physics for R. Bott, Conf. Proc. Lecture Notes Geom. Topology, IV, (pp. 167–201), (1995)

  29. Hanlon, P.: The action of \( S_n \) on the components of the Hodge decomposition of Hochschild homology. Michigan Math. J. 37(1), 105–124 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  30. Humphreys, J.E.: Reflection groups and Coxeter groups. Number 29. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  31. Kane, R.M.: Reflection groups and invariant theory, vol. 5. Springer, New York (2001)

    Book  MATH  Google Scholar 

  32. Kontsevich, M.: Formal (non)-commutative symplectic geometry. In: The Gelfand mathematical seminars, 1990–1992, pages 173–187. Springer, (1993)

  33. Kraskiewicz, W., Weyman, J.: Algebra of invariants and the action of a Coxeter element. Math. Inst. Univ. Copernic Torún, Poland (1987)

    MATH  Google Scholar 

  34. Loday, J.-L.: Cyclic homology, vol. 301. Springer Science & Business Media, New York (2013)

    MATH  Google Scholar 

  35. Mantaci, R., Reutenauer, C.: A generalization of Solomon’s algebra for hyperoctahedral groups and other wreath products. Commun. Algebra 23(1), 27–56 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  36. Matherne, J.P., Miyata, D., Proudfoot, N., Ramos, E.: Equivariant log concavity and representation stability. International Mathematics Research Notices, (2021)

  37. Mathieu, O.: Hidden \(S_{n}\)-actions. Commun. Math. Phys. 176, 467–474 (1996)

    Article  MATH  Google Scholar 

  38. Moci, L.: Combinatorics and topology of toric arrangements defined by root systems. Rendiconti Lincei-Matematica e Applicazioni 19(4), 293–308 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  39. Moseley, D.: Equivariant cohomology and the Varchenko-Gelfand filtration. J. Algebra 472, 95–114 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  40. Moseley, D., Proudfoot, N., Young, B.: The Orlik-Terao algebra and the cohomology of configuration space. Exp. Math. 26(3), 373–380 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  41. Proudfoot, N.: Symplectic geometry. Lecture Notes. University of Oregon. http://pages.uoregon.edu/njp/sg.pdf

  42. Reutenauer, C.: Free Lie algebras. London Mathematical Society Monographs, vol. 7. New Series. Oxford Science Publications. The Clarendon Press, Oxford University Press (1993)

  43. Robinson, A., Whitehouse, S.: The tree representation of \(\Sigma _{n + 1}\). J. Pure Appl. Algebra 111(1), 245–253 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  44. Saliola, F.V.: The face semigroup algebra of a hyperplane arrangement. Can. J. Math. 61(4), 904–929 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  45. Sinha, D.: The homology of the little disks operad. arXiv preprint math/0610236, (2006)

  46. Stembridge, J.: A guide to working with Weyl group representations. http://www.liegroups.org/papers/summer06/what.pdf

  47. Sundaram, S.: Homotopy of non-modular partitions and the Whitehouse module. J. Algebraic Combin. 9(3), 251–269 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  48. Sundaram, S., Welker, V.: Group actions on arrangements of linear subspaces and applications to configuration spaces. Trans. Am. Math. Soc. 349(4), 1389–1420 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  49. Tymoczko, J.: An introduction to equivariant cohomology and homology. Contemp. Math. 388, 169–188 (2005)

    Article  Google Scholar 

  50. Varchenko, A.N., Gel’fand, I.M.: Heaviside functions of a configuration of hyperplanes. Funktsional Anal. i Prilozhen 21(4), 1–18 (1987)

    MathSciNet  MATH  Google Scholar 

  51. Vazirani, M.: Undergraduate Thesis–Harvard University., (1993)

  52. Whitehouse, S.: The Eulerian representations of \(\Sigma _{n}\) as restrictions of representations of \(\Sigma _{n+1}\). J. Pure Appl. Algebra 115(3), 309–320 (1997)

    Article  MathSciNet  Google Scholar 

  53. Xicoténcatl, M.A.: Orbit configuration spaces, infinitesimal braid relations in homology and equivariant loop spaces. PhD Thesis–University of Rochester., (1997)

  54. Xicoténcatl, M.A.: Cohomology of \(F(\mathbb{R}\mathbb{P} ^2, k)\). Contemp. Math. 265, 233 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  55. Xicoténcatl, M.A.: Product decomposition of loop spaces of configuration spaces. Topol. Appl. 121(1–2), 33–38 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author is very grateful to Vic Reiner for guidance and encouragement at every stage in this project, to Sheila Sundaram for insightful questions that served as the initial inspiration for this work, to Monica Vazirani for sharing her undergraduate thesis, and to Marcelo Aguiar, François Bergeron, Patty Commins, Christophe Hohlweg, Allen Knutson, Nick Proudfoot, Franco Saliola and Dev Sinha for helpful discussions. The author is supported by the NSF Graduate Research Fellowship (Award Number DMS-0007404).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Brauner.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brauner, S. A Type B analog of the Whitehouse representation. Math. Z. 303, 58 (2023). https://doi.org/10.1007/s00209-022-03200-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00209-022-03200-7

Keywords

Mathematics Subject Classification

Navigation