Skip to main content
Log in

The weight reduction of mod p Siegel modular forms for \(GSp_4\) and theta operators

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

In this paper we investigate the (classical) weights of mod p Siegel modular forms of degree 2 toward studying Serre’s conjecture for \(GSp_4/\mathbb {Q}\). We first construct various theta operators on the space of such forms à la Katz and define the theta cycles for the specific theta operators. Secondly, we study the partial Hasse invariants on each Ekedahl–Oort stratum and their local behaviors. This enables us to obtain a kind of weight reduction theorem for mod p Siegel modular forms of degree 2 without increasing the level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altman, A., Kleiman, S.: Introduction to Grothendieck duality theory. Lecture Notes in Mathematics, vol. 146. Springer, Berlin (1970)

  2. Andrianov, A.-N.: Quadratic forms and Hecke operators. Grundlehren der Mathematischen Wissenschaften, vol. 286. Springer, Berlin (1987)

  3. Asgari, M., Schmidt, R.: Siegel modular forms and representations. Manuscr. Math. 104(2), 173–200 (2001)

    MathSciNet  MATH  Google Scholar 

  4. Ash, A., Stevens, G.: Cohomology of arithmetic groups and congruences between systems of Hecke eigenvalues. J. Reine Angew. Math. 365, 192–220 (1986)

    MathSciNet  MATH  Google Scholar 

  5. Berger, L.: Représentations modulaires de \(GL_2({\mathbb{Q} }_p)\) et représentations galoisiennes de dimension 2. Astérisque No. 330, 263–279 (2010)

    Google Scholar 

  6. Berger, L., Li, H., Zhu, H.-J.: Construction of some families of 2-dimensional crystalline representations. Math. Ann. 329(2), 365–377 (2004)

    MathSciNet  MATH  Google Scholar 

  7. Berthelot, P., Breen, L., Messing, W.: Théorie de Dieudonné cristalline II, LNM 930. Springer, New York (1982)

  8. Böcherer, S., Nagaoka, S.: On mod \(p\) properties of Siegel modular forms. Math. Ann. 338(2), 421–433 (2007)

    MathSciNet  MATH  Google Scholar 

  9. Borel, A., Jacquet, H.: Automorphic forms and automorphic representations. In: Proc. Sympos. Pure Math., XXXIII, Part 1, pp. 189–207 (1977)

  10. Boxer, G.: Torsion in the coherent cohomology of Shimura varieties and Galois representations. arXiv:1507.05922

  11. Boxer, G., Calegari, F., Gee, T., Pilloni, V.: Abelian surfaces over totally real fields are potentially modular. Publ. Math. Inst. Hautes Études Sci. 134, 153–501 (2021)

    MathSciNet  MATH  Google Scholar 

  12. Buzzard, K., Diamond, F., Jarvis, F.: On Serre’s conjecture for mod \(\ell \) Galois representations over totally real fields. Duke Math. J. 155(1), 105–161 (2010)

    MathSciNet  MATH  Google Scholar 

  13. Buzzard, K., Gee, T.: Explicit reduction modulo \(p\) of certain two-dimensional crystalline representations. Int. Math. Res. Not. IMRN 12, 2303–2317 (2009)

    MathSciNet  MATH  Google Scholar 

  14. Calegari, F., Gee, T.: Irreducibility of automorphic Galois representations of \(GL(n)\), \(n\) at most 5. Ann. Inst. Fourier (Grenoble) 63(5), 1881–1912 (2013)

    MathSciNet  MATH  Google Scholar 

  15. Calegari, F., Geraghty, D.: Minimal modularity lifting for nonregular symplectic representations. With an appendix by Calegari, Geraghty and Michael Harris. Duke Math. J. 169(5), 801–896 (2020)

    MathSciNet  MATH  Google Scholar 

  16. de Shalit, E., Goren, E.-Z.: A theta operator on Picard modular forms modulo an inert prime. Res. Math. Sci. 3, Paper No. 28 (2016)

  17. de Shalit, E., Goren, E.-Z.: Theta operators on unitary Shimura varieties. Algebra Number Theory 13(8), 1829–1877 (2019)

    MathSciNet  MATH  Google Scholar 

  18. Edixhoven, B.: The weight in Serre’s conjectures on modular forms. Invent. Math. 109(3), 563–594 (1992)

    MathSciNet  MATH  Google Scholar 

  19. Edixhoven, B.: Serre’s conjecture. Modular forms and Fermat’s last theorem (Boston, MA, 1995), pp. 209–242. Springer, New York (1997)

  20. Eischen, E.-E., Flander, M., Ghitza, A., Mantovan, E., McAndrew, A.: Differential operators mod \(p\): analytic continuation and consequences. Algebra Number Theory 15(6), 1469–1504 (2021)

    MathSciNet  MATH  Google Scholar 

  21. Eischen, E., Mantovan, E.: Entire theta operators at unramified primes. Int. Math. Res. Not. 2022, 16405–16463 (2022). https://doi.org/10.1093/imrn/rnab190

    Article  MathSciNet  MATH  Google Scholar 

  22. Evdokimov, S.A.: Euler products for congruence subgroups of the Siegel group of genus 2. Math. USSR Sb. 28, 431–458 (1976)

    MATH  Google Scholar 

  23. Faltings, G., Chai, C.-L.: Degeneration of abelian varieties. With an appendix by David Mumford. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 22. Springer, Berlin. xii+316 pp (1990)

  24. Frander, M.: A theta operator for Siegel modular forms (mod \(p\)), Thesis (2013)

  25. Gee, T., Herzig, F., Savitt, D.: General Serre weight conjectures. J. Eur. Math. Soc. (JEMS) 20(12), 2859–2949 (2018)

    MathSciNet  MATH  Google Scholar 

  26. Gee, T., Geraghty, D.: Companion forms for unitary and symplectic groups. Duke Math. J. 161(2), 247–303 (2012)

    MathSciNet  MATH  Google Scholar 

  27. Gee, T.: Automorphic lifts of prescribed types. Math. Ann. 350(1), 107–144 (2011)

    MathSciNet  MATH  Google Scholar 

  28. Gerritzen, L.: Periods and Gauss–Manin connection for families of \(p\)-adic Schottky groups. Math. Ann. 275(3), 425–453 (1986)

    MathSciNet  MATH  Google Scholar 

  29. Ghitza, A.: Hecke eigenvalues of Siegel modular forms (mod \(p\)) and of algebraic modular forms. J. Number Theory 106(2), 345–384 (2004)

    MathSciNet  MATH  Google Scholar 

  30. Ghitza, A.: All Siegel Hecke eigensystems (mod \(p\)) are cuspidal. Math. Res. Lett. 13(5–6), 813–823 (2006)

    MathSciNet  MATH  Google Scholar 

  31. Ghitza, A., McAndrew, A.: Theta operators on Siegel modular forms and Galois representations. arXiv:1601.01835

  32. Goldring, W., Koskivirta, J.-S.: Strata Hasse invariants, Hecke algebras and Galois representations. Invent. Math. 217(3), 887–984 (2019)

    MathSciNet  MATH  Google Scholar 

  33. Goren, E.-Z.: Hasse invariants for Hilbert modular varieties. Isr. J. Math. 122, 157–174 (2001)

    MathSciNet  MATH  Google Scholar 

  34. Goren, E.-Z., Oort, F.: Stratifications of Hilbert modular varieties. J. Algebr. Geom. 9(1), 111–154 (2000)

    MathSciNet  MATH  Google Scholar 

  35. Gross, B.: A tameness criterion for Galois representations associated to modular forms (mod \(p\)). Duke Math. J. 61(2), 445–517 (1990)

    MathSciNet  MATH  Google Scholar 

  36. Gross, B.: On the Langlands correspondence for symplectic motives. Izv. Math. 80(4), 678–692 (2016)

    MathSciNet  MATH  Google Scholar 

  37. Harris, M.: Special values of zeta functions attached to Siegel modular forms. Ann. Sci. ecole Norm. Sup. (4) 14(1), 77–120 (1981)

    MathSciNet  MATH  Google Scholar 

  38. Hartshorne, R.: Algebraic geometry. Graduate Texts in Mathematics, No. 52. Springer, New York (1977)

  39. Hartwig, P.: On the reduction of the Siegel moduli space of abelian varieties of dimension 3 with Iwahori level structure. Münster J. Math. 4, 185–226 (2011)

    MathSciNet  MATH  Google Scholar 

  40. Herzig, F.: The weight in a Serre-type conjecture for tame \(n\)-dimensional Galois representations. Duke Math. J. 149(1), 37–116 (2009)

    MathSciNet  MATH  Google Scholar 

  41. Herzig, F., Tilouine, J.: Conjecture de type de Serre et formes compagnons pour \(GSp_4\). J. Reine Angew. Math. 676, 1–32 (2013)

    MathSciNet  MATH  Google Scholar 

  42. Ichikawa, T.: Congruences between Siegel modular forms. Math. Ann. 342(3), 527–532 (2008)

    MathSciNet  MATH  Google Scholar 

  43. Ichikawa, T.: Vector-valued \(p\)-adic Siegel modular forms. J. Reine Angew. Math. 690, 35–49 (2014)

    MathSciNet  MATH  Google Scholar 

  44. Jochnowitz, N.: A study of the local components of the Hecke algebra mod \(l\). Trans. Am. Math. Soc. 270(1), 253–267 (1982)

    MathSciNet  MATH  Google Scholar 

  45. Katsura, T., Oort, F.: Families of supersingular abelian surfaces. Compos. Math. 62(2), 107–167 (1987)

    MathSciNet  MATH  Google Scholar 

  46. Katz, N.: A result on modular forms in characteristic \(p\). Modular functions of one variable, V (Proc. Second Internat. Conf., Univ. Bonn, Bonn, 1976), pp. 53–61. Lecture Notes in Math., vol. 601

  47. Katz, N.: Serre–Tate local moduli. Algebraic surfaces (Orsay, 1976–1978), pp. 138–202, Lecture Notes in Math., vol. 868. Springer, Berlin (1981)

  48. Khare, C., Wintenberger, J.-P.: Serre’s modularity conjecture. I. Invent. Math. 178(3), 485–504 (2009)

    MathSciNet  MATH  Google Scholar 

  49. Khare, C., Wintenberger, J.-P.: Serre’s modularity conjecture. II. Invent. Math. 178(3), 505–586 (2009)

    MathSciNet  MATH  Google Scholar 

  50. Koblitz, N.: \(p\)-adic variation of the zeta-function over families of varieties defined over finite fields. Compos. Math. 31(2), 119–218 (1975)

    MathSciNet  MATH  Google Scholar 

  51. Kollár, J., Mori, S.: Birational geometry of algebraic varieties. With the collaboration of C. H. Clemens and A. Corti. Translated from the 1998 Japanese original. Cambridge Tracts in Mathematics, vol. 134. Cambridge University Press, Cambridge. viii+254 pp (1998)

  52. Koskivirta, J.-S.: Canonical sections of the Hodge bundle over Ekedahl–Oort strata of Shimura varieties of Hodge type. J. Algebra 449, 446–459 (2016)

    MathSciNet  MATH  Google Scholar 

  53. Lan, K.-W., Suh, J.: Liftability of mod \(p\) cusp forms of parallel weights. Int. Math. Res. Not. IMRN 8, 1870–1879 (2011)

    MathSciNet  MATH  Google Scholar 

  54. Lan, K.-W., Suh, J.: Vanishing theorems for torsion automorphic sheaves on general PEL-type Shimura varieties. Adv. Math. 242, 228–286 (2013)

    MathSciNet  MATH  Google Scholar 

  55. Laumon, G.: Sur la cohomologie à supports compacts des variétés de Shimura pour \(GSp(4)_{\mathbb{Q} }\). Compos. Math. 105(3), 267–359 (1997)

    MATH  Google Scholar 

  56. Messing, W.: The crystals associated to Barsotti–Tate groups: with applications to abelian schemes. Lecture Notes in Mathematics, vol. 264. Springer, Berlin (1972)

  57. Mumford, D.: Abelian varieties. With appendices by C. P. Ramanujam and Yuri Manin. Corrected reprint of the second (1974) edition. Tata Institute of Fundamental Research Studies in Mathematics, vol. 5. Published for the Tata Institute of Fundamental Research, Bombay; by Hindustan Book Agency, New Delhi. xii+263 pp (2008)

  58. Oort, F.: A stratification of a moduli space of polarized abelian varieties in positive characteristic. Moduli of curves and abelian varieties, pp. 47–64

  59. Oort, F.: A stratification of a moduli space of abelian varieties. Moduli of abelian varieties (Texel Island, 1999), pp. 345–416, Progr. Math., vol. 195. Birkhäuser, Basel (2001)

  60. Salvati Manni, R., Top, J.: Cusp forms of weight 2 for the group \(\Gamma (4,8)\). Am. J. Math. 115, 455–486 (1993)

    MathSciNet  MATH  Google Scholar 

  61. Serre, J.-P.: Sur les reprśentations modulaires de degré 2 de Gal\(({\overline{\mathbb{Q}}}/{\mathbb{Q}})\). Duke Math. J. 54(1), 179–230 (1987)

    MathSciNet  Google Scholar 

  62. Skinner, C., Urban, E.: Sur les deformations p -adiques de certaines representations automorphes. J. Inst. Math. Jussieu 5, 629–698 (2006)

    MathSciNet  MATH  Google Scholar 

  63. Taylor, R.: On congruences of modular forms, Thesis (1988)

  64. Taylor, R.: Galois representations associated to Siegel modular forms of low weight. Duke Math. J. 63, 281–332 (1991)

    MathSciNet  MATH  Google Scholar 

  65. Taylor, R.: Galois representations attached to torsion in the cohomology of automorphic vector bundles, after Boxer, talk at MPIM on Wed, 2014-06-11. https://www.mpim-bonn.mpg.de/node/5198

  66. Tilouine, J.: Nearly ordinary rank four Galois representations and \(p\)-adic Siegel modular forms, With an appendix by Don Blasius. Compos. Math. 142, 1122–1156 (2006)

    MathSciNet  MATH  Google Scholar 

  67. Tilouine, J.: Formes compagnons et complexe BGG dual pour \(GSp_4\). Ann. Inst. Fourier (Grenoble) 62(4), 1383–1436 (2012)

    MathSciNet  MATH  Google Scholar 

  68. Weissauer, R.: Four dimensional Galois representations. Astérisque 302, 67–150 (2005)

    MathSciNet  MATH  Google Scholar 

  69. Weissauer, R.: Endoscopy for \(GSp(4)\) and the cohomology of Siegel modular threefolds. Lecture Notes in Mathematics, vol. 1968. Springer, Berlin (2009)

  70. Weissauer, R.: Existence of Whittaker models related to four dimensional symplectic Galois representations, Modular forms on Schiermonnikoog, 285–310. Cambridge Univ. Press, Cambridge (2008)

    Google Scholar 

  71. Weissauer, R.: Siegel modular forms mod \(p\)(preprint) (2008)

  72. Winter, P.: On the modular representation theory of the two-dimensional Special Linear Group over an algebraically closed field. J. Lond. Math. Soc. II. Ser. 16, 237–252 (1977)

    MathSciNet  MATH  Google Scholar 

  73. Yamashita, G., Yasuda, S.: Reduction of two dimensional crystalline representations and Hypergeometric polynomials (in preparation)

  74. Yamauchi, T.: A new theta cycle for \(GSp_4\) and an Edixhoven type theorem. arXiv:2203.06325(submitted) (2022)

  75. Zink, T.: The display of a formal \(p\)-divisible group. Astérisque 278, 127–248 (2002)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank K-W. Lan, A. Ghitza, F. Herzig, S. Morra, S. Harashita, and M-H Nicole for helpful discussions. In particular, Herzig kindly informed me a reference [72] and explained his joint work with Tilouine [41]. Dr Ortiz Ramirez pointed out an error of the argument in Theorem 4.11 of an earlier version. The author would like to give sincere thanks to him. A part of this work was done during the author’s visiting to University of Toronto as a JSPS Postdoctoral Fellowship for Research Abroad No.378. The author would like to special thank Professor Henry Kim, James Arthur, Kumar Murty and staffs there for kindness and the university for hospitality. Finally, the author would like to give special thanks to the referee, whose suggestions have greatly improved the presentation and readability of this paper. He is now partially supported by JSPS KAKENHI Grant Number (B) No.19H01778.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takuya Yamauchi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author is partially supported by JSPS KAKENHI Grant Number (B) No. 19H01778.

Appendix A

Appendix A

In this section we give an explicit form of Pieri’s decomposition. Let R be an \(\overline{\mathbb {F}}_p\)-algebra. Put \(\textrm{St}_2(R)=Re_1\oplus Re_2\) and let \(GL_2(R)\) acts on \(St_2\) by

$$\begin{aligned} ge_1=ae_1+c e_2,\ ge_2=be_1+de_2,\ g=\begin{pmatrix} a &{}\quad b \\ c&{}\quad d \end{pmatrix}. \end{aligned}$$

For a positive integer n, let \(V(n)=\textrm{Sym}^n \textrm{St}_2(R)\) be the n-th symmetric representation of \(GL_2(R)\). Put \(V(n,m)=V(n)\otimes _R \det ^n(St_2(R))\) for an integer \(m\ge 0\).

We are concerned with an explicit decomposition of \(V(n)\otimes _R V(2)\). Consider the basis \(u_i=e^i_1e^{n-i}_2,\ i=0,\ldots ,n\) (resp. \(v_2=e^2_1,\ v_1=e_1e_2,\ v_0=e^2_2\)) of V(n) (resp. V(2)). We define the operators EF on V(n) by \(Eu_i=iu_{i-1},\ Fu_i=(n-i)u_{i+1}\). We also define the same operators on \(V(n)\otimes _R V(n')\) by Leibniz rule \(E(u_i\otimes u_{j})=Eu_i\otimes u_j+u_i\otimes Eu_j,\ F(u_i\otimes u_{j})=Fu_i\otimes u_j+u_i\otimes Fu_j\).

We first assume that \(n+3\le p\). Put

$$\begin{aligned} w_0=u_n\otimes v_2,\ w_1=u_n\otimes v_1-u_{n-1}\otimes v_2,\ w_2=u_n\otimes v_0-2u_{n-1}\otimes v_1+u_{n-2}\otimes v_2 \end{aligned}$$

Since \(Fw_i=0\) for \(i=0,1,2\), we expect that these vectors would be highest weight vectors. Put

$$\begin{aligned} W_0(n)= & {} \left\langle f^{(0)}_i:=\frac{1}{(n+2)_i}E^iw_0,\ 0\le i\le n+2 \right\rangle _R,\\{} & {} W_1(n)=\left\langle f^{(1)}_i:=\frac{1}{(n)_i}E^iw_1,\ 0\le i\le n \right\rangle _R, \end{aligned}$$

and

$$\begin{aligned} W_2(n)=\left\langle f^{(2)}_i:=\frac{1}{(n-2)_i}E^iw_2,\ 0\le i\le n-2 \right\rangle _R \end{aligned}$$

where \((x)_i=x!/(x-i)!\) and we set \((*)_0:=1\).

Recall \(V(n,m)=V(n)\otimes _R \det ^m\) and denote by \(\{u_i\}_i\) its basis by abuse of notation. By direct computation, we have the following:

Proposition 7.1

For \(j=0,1,2\), as \(GL_2(R)\)-modules,

$$\begin{aligned} V(n+2-2j,j){\mathop {\longrightarrow }\limits ^{\sim }} W_j(n),\ u_i\mapsto f^{(j)}_i. \end{aligned}$$

When \(n=p-1\) or \(p-2\), the denominators of the coefficients appearing in \(f^{(2)}_i:=\frac{1}{(n-2)_i}E^iw_2\) are not divisible by p. Hence only \(W_2(n)\) still makes sense and so does the isomorphism \(V(n-2,2){\mathop {\longrightarrow }\limits ^{\sim }} W_2(n)\). Clearly \(W_2(n)\) gives a splitting of the surjection \(V(n)\otimes _R V(2)\longrightarrow V(n-2,2)\).

To end this section we give an explicit realization of an isomorphism \(V(n)\otimes _R V(2)\simeq W_2(n)\oplus W_1(n)\oplus W_0(n)\) in terms of our basis. Note that \(\theta ^{\underline{k}}_1\) is related to \(W_2(n)\). We identify \(v=\sum _{\begin{array}{c} 0\le i\le n \\ 0\le j\le 2 \end{array}}a_{ij}u_i\otimes v_j\in V(n)\otimes _R V(2)\) with the low vector

$$\begin{aligned} (a_{n2},a_{n1},a_{n0},a_{(n-1)2},a_{(n-1)1},a_{(n-1)0},\ldots ,a_{12},a_{11},a_{10},a_{02},a_{01},a_{00}). \end{aligned}$$

Let us first assume that \(n<p-2\). If we write

$$\begin{aligned} v=\sum _{i=0}^{n+2}b^{(0)}_if^{(0)}_i+\sum _{i=0}^{n}b^{(1)}_if^{(1)}_i+\sum _{i=0}^{n-2}b^{(2)}_if^{(2)}_i, \end{aligned}$$

then we have

$$\begin{aligned} {}^t(b^{(0)}_i)_{0\le i\le n+2}= \left( \begin{array}{c} a_{n2} \\ a_{(n-1)2}+a_{n1} \\ a_{(n-2)2}+a_{(n-1)1}+a_{n0} \\ a_{(n-3)2}+a_{(n-2)1}+a_{(n-1)0} \\ \vdots \\ a_{12}+a_{21}+a_{30} \\ a_{02}+a_{11}+a_{20} \\ a_{01}+a_{10} \\ a_{00} \end{array} \right) \end{aligned}$$
(7.1)

where the superscript “t" stands for the transpose.

As for \(b^{(1)}_i\) we have

$$\begin{aligned} b^{(1)}_i=\left\{ \begin{array}{lc} -\displaystyle \frac{2}{n+2}a_{(n-1)2}+\frac{n}{n+2}a_{n1}&{}\quad (i=0) \\ &{} \\ -\displaystyle \frac{2+2i}{n+2}a_{(n-1-i)2}+\frac{n-2i}{n+2}a_{(n-i)1}+\frac{2n+2-2i}{n+2}a_{(n+1-i)0},\ &{}\quad (i=1,\ldots ,n-1) \\ &{} \\ -\displaystyle \frac{n}{n+2}a_{01}+\frac{2}{n+2}a_{10} &{}\quad (i=n) \end{array} \right. \nonumber \\ \end{aligned}$$
(7.2)

For the remaining coefficients \(b^{(2)}_i\), we have

$$\begin{aligned} b^{(2)}_i= & {} \frac{(i+1)(i+2)}{n(n+1)}a_{(n-2-i)2}- \frac{(i+1)(n-i-1)}{n(n+1)}a_{(n-1-i)1}\nonumber \\{} & {} + \frac{(n-i-1)(n-i)}{n(n+1)}a_{(n-i)0} \end{aligned}$$
(7.3)

for \(i=0,\ldots , n-2\). When \(n=p-1\) or \(p-2\) we have a splitting projection \(V(n)\otimes _R V(2)\longrightarrow W_2(n)\) which is given by replacing \(b^{(2)}_i\) in (7.3) with

$$\begin{aligned} b^{(2)}_i=(i+1)(i+2)a_{(n-2-i)2}- (i+1)(n-i-1)a_{(n-1-i)1}+ (n-i-1)(n-i)a_{(n-i)0}\nonumber \\ \end{aligned}$$
(7.4)

obtained by multiplying \(n(n+1)\). Notice that \(n(n+1)\) is zero if \(n=p-1\) but we can justify by working over \(\mathbb {Z}[1/(n+2)!]\) at first and then by multiplying \(n(n+1)\). This yields (7.4) from (7.3).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamauchi, T. The weight reduction of mod p Siegel modular forms for \(GSp_4\) and theta operators. Math. Z. 303, 10 (2023). https://doi.org/10.1007/s00209-022-03153-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00209-022-03153-x

Keywords

Mathematics Subject Classification

Navigation