Skip to main content
Log in

Blow-up and lifespan estimate for generalized Tricomi equations related to Glassey conjecture

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We study in this paper the small data Cauchy problem for the semilinear generalized Tricomi equations with a nonlinear term of derivative type

$$\begin{aligned} u_{tt}-t^{2m}\Delta u=|u_t|^p \end{aligned}$$

for \(m\ge 0\). Blow-up result and lifespan estimate from above are established for \(1<p\le 1+\frac{2}{(m+1)(n-1)-m}\). If \(m=0\), our results coincide with those of the semilinear wave equation. The novelty consists in the construction of a new test function, by combining cut-off functions, the modified Bessel function of second kind and a (generalized) eigenfunction of the Laplacian. Interestingly, if \(n=2\) the blow-up power is independent of m. We also furnish a local existence result, which implies the optimality of lifespan estimate at least in the 1-dimensional case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramovitz, M., Stegun, I.A.: Handbook of Mathematical Functions, 10th printing. National Bureau of Standards (1972)

  2. Agemi, R.: Blow-up of solutions to nonlinear wave equations in two space dimensions. Manuscr. Math. 73, 153–162 (1991)

    Article  MathSciNet  Google Scholar 

  3. Barros-Neto, J., Gelfand, I.M.: Fundamental solutions for the Tricomi operator. Duke Math. J. 98(3), 465–483 (1999)

    Article  MathSciNet  Google Scholar 

  4. Barros-Neto, J., Gelfand, I.M.: Fundamental solutions for the Tricomi operator. II. Duke Math. J. 111(3), 561–584 (2002)

  5. Barros-Neto, J., Gelfand, I.M.: Fundamental solutions of the Tricomi operator III. Duke Math. J. 128(1), 119–140 (2005)

    Article  MathSciNet  Google Scholar 

  6. Brenner, P.: On \(L^p-L^{p^{\prime }}\) estimates for the wave-equation. Math. Z. 145(3), 251–254 (1975)

    Article  MathSciNet  Google Scholar 

  7. Chen, W., Lucente, S., Palmieri, A.: Nonexistence of global solutions for generalized Tricomi equations with combined nonlinearity. Nonlinear Anal. Real World Appl. 61, 103354 (2021)

    Article  MathSciNet  Google Scholar 

  8. Ebert, M.R., Reissig, M.: Methods for partial differential equations. Qualitative Properties of Solutions, Phase Space Analysis, Semilinear Models (2018)

  9. Frankl, F.: On the problems of Chaplygin for mixed sub- and supersonic flows. Bull. Acad. Sci. URSS. Ser. Math. 9, 121–143 (1945)

    MathSciNet  MATH  Google Scholar 

  10. Glassey, R.T.: MathReview to “Global behavior of solutions to nonlinear wave equations in three space dimensions” of Sideris. Commun. Partial Differ. Equ. (1983)

  11. Hamouda, M., Hamza, M.A.: Blow-up and lifespan estimate for the generalized Tricomi equation with mixed nonlinearities (2020). arXiv:2011.04895

  12. He, D.Y.: Critical Exponents for Semilinear Tricomi-type Equations, Doctoral dissertation. Georg-August-Universität Göttingen (2016)

  13. He, D.Y., Witt, I., Yin, H.C.: On semilinear Tricomi equations with critical exponents or in two space dimensions. J. Differ. Equ. 263(12), 8102–8137 (2017)

    Article  MathSciNet  Google Scholar 

  14. He, D.Y., Witt, I., Yin, H.C.: On the global solution problem for semilinear generalized Tricomi equations, I. Calc. Var. Partial Differ. Equ. 56(2), Art. 21 (2017)

  15. He, D.Y., Witt, I., Yin, H.C.: On the global weak solution problem of semilinear generalized Tricomi equations. II. Pac. J. Math. 314(1), 29–80 (2021)

    Article  MathSciNet  Google Scholar 

  16. He, D.Y., Witt, I., Yin, H.C.: On semilinear Tricomi equations in one space dimension. arXiv:1810.12748

  17. Hidano, K., Tsutaya, K.: Global existence and asymptotic behavior of solutions for nonlinear wave equations. Indiana Univ. Math. J. 44, 1273–1305 (1995)

    Article  MathSciNet  Google Scholar 

  18. Hidano, K., Wang, C., Yokoyama, K.: The Glassey conjecture with radially symmetric data. J. Math. Pures Appl. 98(9), 518–541 (2012)

    Article  MathSciNet  Google Scholar 

  19. Hörmander, L.: Estimates for translation invariant operators in \(L^p\) spaces. Acta Math. 104(1–2), 93–140 (1960)

    Article  MathSciNet  Google Scholar 

  20. Ikeda, M., Lin, J.Y., Tu, Z.H.: Small data blow-up for the weakly coupled system of the generalized Tricomi equations with multiple propagation speed. J. Evol. Equ. 21(4), 3765–3796 (2021)

    Article  MathSciNet  Google Scholar 

  21. Ikeda, M., Sobajima, M., Wakasa, K.: Blow-up phenomena of semilinear wave equations and their weakly coupled systems. J. Differ. Equ. 267, 5165–5201 (2019)

    Article  MathSciNet  Google Scholar 

  22. Inui, T.: Special Function. Iwanami Shoten, Tokyo (1962)

    Google Scholar 

  23. John, F.: Blow-up for quasilinear wave equations in three space dimensions. Commun. Pure Appl. Math. 34, 29–51 (1981)

    Article  MathSciNet  Google Scholar 

  24. John, F.: Non-existence of global solutions of \(\square u = \frac{\partial }{\partial t} F(u_t)\) in two and three space dimensions. Rend. Circ. Mat. Palermo (2) Suppl. 8, 229–249 (1985)

  25. Lai, N.A., Schiavone, N.M., Takamura, H.: Heat-like and wave-like lifespan estimates for solutions of semilinear damped wave equations via a Kato’s type lemma. J. Differ. Equ. 269, 11575–11620 (2020)

    Article  MathSciNet  Google Scholar 

  26. Lai, N.A., Takamura, H.: Blow-up for semilinear damped wave equations with sub-Strauss exponent in the scattering case. Nonlinear Anal. 168, 222–237 (2018)

    Article  MathSciNet  Google Scholar 

  27. Lai, N.A., Takamura, H.: Nonexistence of global solutions of nonlinear wave equations with weak time-dependent damping related to Glassey’s conjecture. Differ. Integr. Equ. 32, 37–48 (2019)

    MathSciNet  MATH  Google Scholar 

  28. Lai, N.A., Tu, Z.H.: Strauss exponent for semilinear wave equations with scattering space dependent damping. J. Math. Anal. Appl. 489, 124189 (2020)

    Article  MathSciNet  Google Scholar 

  29. Lin, J.Y., Tu, Z.H.: Lifespan of semilinear generalized Tricomi equation with Strauss type exponent. arXiv:1903.11351

  30. Lucente, S., Palmieri, A.: A blow-up result for a generalized Tricomi equation with nonlinearity of derivative type. Milan J. Math. 89(1), 45–57 (2021)

    Article  MathSciNet  Google Scholar 

  31. Masuda, K.: Blow-up solutions for quasi-linear wave equations in two space dimensions. Lect. Notes Numer. Appl. Anal. 6, 87–91 (1983)

    Google Scholar 

  32. Rammaha, M.A.: Finite-time blow-up for nonlinear wave equations in high dimensions. Commun. Partial Differ. Equ. 12(6), 677–700 (1987)

    Article  MathSciNet  Google Scholar 

  33. Reissig, M.: On \(L_p - L_q\) estimates for solutions of a special weakly hyperbolic equation. Nonlinear Evolution Equations and Infinite-Dimensional Dynamical Systems, pp. 153–164 (1997)

  34. Reissig, M.: Weakly hyperbolic equations with time degeneracy in Sobolev spaces. Abstr. Appl. Anal. 2(3–4), 239–256 (1997)

  35. Ruan, Z.-P., Witt, I., Yin, H.-C.: The existence and singularity structures of low regularity solutions to higher order degenerate hyperbolic equations. J. Differ. Equ. 256, 407–460 (2014)

    Article  MathSciNet  Google Scholar 

  36. Ruan, Z.-P., Witt, I., Yin, H.-C.: On the existence and cusp singularity of solutions to semilinear generalized Tricomi equations with discontinuous initial data. Commun. Contemp. Math. 17(03), 1450028 (2015)

    Article  MathSciNet  Google Scholar 

  37. Ruan, Z.-P., Witt, I., Yin, H.-C.: On the existence of low regularity solutions to semilinear generalized Tricomi equations in mixed type domains. J. Differ. Equ. 259, 7406–7462 (2015)

    Article  MathSciNet  Google Scholar 

  38. Ruan, Z.-P., Witt, I., Yin, H.-C.: Minimal regularity solutions of semilinear generalized Tricomi equations. Pac. J. Math. 296(1), 181–226 (2018)

    Article  MathSciNet  Google Scholar 

  39. Runst, T., Sickel, W.: Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations, vol. 3. Walter de Gruyter (2011)

  40. Schaeffer, J.: Finite-time blow up for \(u_{tt}-\Delta u = H(u_r, u_t)\) in two space dimensions. Commun. Partial Differ. Equ. 11(5), 513–543 (1986)

    Article  Google Scholar 

  41. Sideris, T.C.: Global behavior of solutions to nonlinear wave equations in three space dimensions. Commun. Partial Differ. Equ. 8(12), 1291–1323 (1983)

    Article  Google Scholar 

  42. Taniguchi, K., Tozaki, Y.: A hyperbolic equation with double characteristics which has a solution with branching singularities. Math. Jpn. 25, 279–300 (1980)

    MathSciNet  MATH  Google Scholar 

  43. Tricomi, F.: Sulle equazioni lineari alle derivate parziali di secondo ordine, di tipo misto. Atti Accad. Naz. Lincei Mem. Cl. Fis. Mat. Nat. 5, 134–247 (1923)

  44. Tzvetkov, N.: Existence of global solutions to nonlinear massless Dirac system and wave equation with small data. Tsukuba J. Math. 22, 193–211 (1998)

    Article  MathSciNet  Google Scholar 

  45. Wang, C.B.: The Glassey conjecture on asymptotically flat manifolds. Trans. Am. Math. Soc. 367, 7429–7451 (2015)

    Article  MathSciNet  Google Scholar 

  46. Yagdjian, K.: A note on the fundamental solution for the Tricomi-type equation in the hyperbolic domain. J. Differ. Equ. 206, 227–252 (2004)

    Article  MathSciNet  Google Scholar 

  47. Yagdjian, K.: Global existence for the \(n\)-dimensional semilinear Tricomi-type equations. Commun. Partial Differ. Equ. 31(4–6), 907–944 (2006)

  48. Yagdjian, K.: The self-similar solutions of the one-dimensional semilinear Tricomi-type equations. J. Differ. Equ. 236(1), 82–115 (2007)

    Article  MathSciNet  Google Scholar 

  49. Yagdjian, K.: The self-similar solutions of the Tricomi-type equations. Z. Angew. Math. Phys. 58(4), 612–645 (2007)

    Article  MathSciNet  Google Scholar 

  50. Yagdjian, K.: Self-similar solutions of semilinear wave equation with variable speed of propagation. J. Math. Anal. Appl. 336(2), 1259–1286 (2007)

    Article  MathSciNet  Google Scholar 

  51. Zhou, Y.: Blow-up of solutions to the Cauchy problem for nonlinear wave equations. Chin. Ann. Math. 22B(3), 275–280 (2001)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Ning-An Lai is supported by NSF of Zhejiang Province (LY18A010008) and NSFC (12171097). Nico Michele Schiavone is member of the Gruppo Nazionale per L’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM); he was affiliated to Sapienza University of Rome during the writing of this paper, where he was partially supported by the GNAMPA project “Equazioni di tipo dispersivo: teoria e metodi” and by “Progetti per Avvio alla Ricerca di Tipo 1—Sapienza Università di Roma”. Nico Michele Schiavone is also grateful to the Czech Technical University in Prague, where this work was reviewed and where he was supported by the EXPRO grant No. 20-17749X of the Czech Science Foundation. He is currently a International Research Fellow of Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nico Michele Schiavone.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendices

A Some formulas for the modified Bessel functions

For the reader’s convenience, here we collect some formulas from Section 9.6 and Section 9.7 of the handbook by Abramowitz and Stegun [1].

  • The solutions to the differential equation

    $$\begin{aligned} z^2 \frac{d^2}{dz^2} w(z) + z \frac{d}{dz} w(z) - \left( z^2 + \nu ^2 \right) w(z) = 0 \end{aligned}$$

    are the modified Bessel functions \(I_{\pm \nu }(z)\) and \(K_{\nu }(z)\). \(I_\nu (z)\) and \(K_\nu (z)\) are real and positive when \(\nu >-1\) and \(z>0\).

  • Relations between solutions:

    $$\begin{aligned} K_\nu (z) = K_{-\nu }(z) = \frac{\pi }{2} \frac{I_{-\nu }(z)-I_{\nu }(z)}{\sin (\nu \pi )}. \end{aligned}$$
    (A. 1)

    When \(\nu \in \mathbb {Z}\), the right hand-side of this equation is replaced by its limiting value.

  • Recurrence relations:

    $$\begin{aligned} \partial _z I_{\nu }(z)&= I_{\nu +1}(z) + \frac{\nu }{z} I_{\nu }(z),&\partial _z K_{\nu }(z)&= -K_{\nu +1}(z) + \frac{\nu }{z} K_{\nu }(z), \end{aligned}$$
    (A. 2)
    $$\begin{aligned} \partial _z I_{\nu }(z)&= I_{\nu -1}(z) - \frac{\nu }{z} I_{\nu }(z),&\partial _z K_{\nu }(z)&= -K_{\nu -1}(z) - \frac{\nu }{z} K_{\nu }(z). \end{aligned}$$
    (A. 3)
  • Limiting forms for fixed \(\nu \) and \(z \rightarrow 0\):

    $$\begin{aligned} I_{\nu }(z)&\sim \frac{1}{\Gamma (\nu +1)} \left( \frac{z}{2}\right) ^{\nu }&\quad&\text {for } \nu \ne -1,-2,\dots \end{aligned}$$
    (A. 4)
    $$\begin{aligned} K_0(z)&\sim -\ln (z),&\quad&\end{aligned}$$
    (A. 5)
    $$\begin{aligned} K_\nu (z)&\sim \frac{\Gamma (\nu )}{2} \left( \frac{z}{2}\right) ^{-\nu },&\quad&\text {for } \Re \nu >0. \end{aligned}$$
    (A. 6)
  • Asymptotic expansions for fixed \(\nu \) and large arguments:

    $$\begin{aligned}&I_\nu (z) = \frac{1}{\sqrt{2\pi }} z^{-1/2} e^z \times (1+O(z^{-1})),&{\text {for } |z| \text { large and } |\arg z| < \frac{\pi }{2},} \end{aligned}$$
    (A. 7)
    $$\begin{aligned}&K_\nu (z) = \sqrt{\frac{\pi }{2}} z^{-1/2} e^{-z} \times (1+O(z^{-1})),&\text {for } |z| \text { large and } |\arg z| < \frac{3}{2}\pi . \end{aligned}$$
    (A. 8)

B Proof of Theorem 3

In this appendix we prove the \(L^p-L^q\) estimates on the conjugate line for \(W_1(t,s,D_x)\), \(W_2(t,s,D_x)\) and their derivatives respect to time collected in Theorem 3. The argument is adapted from the proof of Theorem 3.3 by Yagdjian [47] (see also [33] and [8,  Chapter 16]), where similar estimates for \(V_1(t,D_x)\) and \(V_2(t,D_x)\) are presented. Note that in [47] the additional hypothesis \(\sigma \ge 0\) is supposed, but this can be dropped, as we will show.

Before to proceed, we recall the following key lemmata.

Definition 2

Denote by \(L^q_p \equiv L^q_p(\mathbb {R}^n)\) the space of tempered distributions T such that

$$\begin{aligned} \left\Vert T * f\right\Vert _{L^q} \le C \left\Vert f\right\Vert _{L^p} \end{aligned}$$

for all Schwartz functions \(f\in \mathcal {S}(\mathbb {R}^n)\) and a suitable positive constant C independent of f.

Denote instead with \(M^q_p \equiv M^q_p(\mathbb {R}^n)\) the set of multiplier of type (pq), i.e. the set of Fourier transforms \(\mathcal {F}(T)\) of distributions \(T \in L^q_p\).

Lemma 4

[19,  Theorem 1.11] Let f be a measurable function such that for all positive \({\lambda }\), we have

$$\begin{aligned} \mathop {\mathrm {meas}}\limits \{\xi \in \mathbb {R}^n :|f(\xi )| \le {\lambda }\} \le C {\lambda }^{-b} \end{aligned}$$

for some suitable \(b \in (1,\infty )\) and positive C. Then, \(f \in M^q_p\) if \(1<p\le 2\le q < \infty \) and \(1/p-1/q=1/b\).

Lemma 5

[6,  Lemma 2] Fix a nonnegative smooth function \(\chi \in C^\infty _0([0,\infty ))\) with compact support \(\mathop {\mathrm {supp}}\limits \chi \subset \{x \in \mathbb {R}^n :1/2 \le |x| \le 2 \}\) such that \(\sum _{k=-\infty }^{\infty } \chi (2^{-k} x)=1\) for \(x\ne 0\). Set \(\chi _k(x) := \chi (2^{-k}x)\) for \(k\ge 1\) and \(\chi _0(x) := 1 - \sum _{k=1}^{\infty } \chi _k(x)\), so that \(\mathop {\mathrm {supp}}\limits \chi _0 \subset \{x \in \mathbb {R}^n :|x| \le 2 \}\).

Let \(a\in L^\infty (\mathbb {R}^n)\), \(1<p\le 2\) and assume that

$$\begin{aligned} \left\Vert \mathcal {F}^{-1}(a \chi _k {\widehat{v}})\right\Vert _{L^{p'}} \le C \left\Vert v\right\Vert _{L^p} \quad \text { for } k\ge 0. \end{aligned}$$

Then for some constant A independent of a we have

$$\begin{aligned} \left\Vert \mathcal {F}^{-1}(a {\widehat{v}})\right\Vert _{L^{p'}} \le AC \left\Vert v\right\Vert _{L^{p}}. \end{aligned}$$

Lemma 6

(Littman type Lemma, see Lemma 4 in [6]) Let P be a real function, smooth in a neighbourhood of the support of \(v \in C_0^\infty (\mathbb {R}^n)\). Assume that the rank of the Hessian matrix \((\partial ^2_{\eta _j \eta _k} P(\eta ))_{j,k\in \{1,\dots ,n\}}\) is at least \(\rho \) on the support of v. Then for some integer N the following estimate holds:

$$\begin{aligned} \left\Vert \mathcal {F}^{-1}(e^{itP(\eta )}v(\eta ))\right\Vert _{L^\infty } \le C (1+|t|)^{-\rho /2} \sum _{|\alpha | \le N} \left\Vert \partial _\eta ^\alpha v\right\Vert _{L^1}. \end{aligned}$$

We will prove now only estimate (iii) of Theorem 3, since the computation for estimates (i) and (ii) are completely analogous; about estimate (iv), we will sketch the proof since it could be strange to the reader that this is the only case where the range of \(\sigma \) collapses to be only a value.

First of all, let us set \(\tau := t/s \ge 1\), \(z=2i\phi (t)\xi \), \(\zeta =2i\phi (s)\xi \) and let us introduce the smooth functions \(X_0, X_1, X_2 \in C^\infty (\mathbb {R}^n;[0,1])\) satisfying

$$\begin{aligned} X_0(x)&= {\left\{ \begin{array}{ll} 1 &{} \text { for } |x| \le 1/2, \\ 0 &{} \text { for } |x| \ge 3/4 , \end{array}\right. } \\ X_2(x)&= {\left\{ \begin{array}{ll} 1 &{} \text { for } |x| \ge 1, \\ 0 &{} \text { for } |x| \le 3/4, \end{array}\right. } \\ X_1(x)&= 1- X_0(\tau ^{m+1} x) - X_2(x). \end{aligned}$$

In particular, observe that

$$\begin{aligned} X_0(\phi (t)\xi ) + X_1(\phi (s)\xi ) + X_2(\phi (s)\xi ) \equiv 1 \end{aligned}$$

for \(0<s\le t\) and \(\xi \in \mathbb {R}^n\).

By relations (3.3) and (3.4), it is straightforward to get

$$\begin{aligned} \begin{aligned} \partial _t V_1(t,|\xi |) =&\, \frac{m+1}{2} t^{-1} z e^{-z/2} [\Phi (\mu +1,2\mu +1;z)-\Phi (\mu ,2\mu ;z)]\\ \partial _t V_2(t,|\xi |) =&\, e^{-z/2} \left[ \Phi (1-\mu ,1-2\mu ;z) - \frac{m+1}{2} z \Phi (1-\mu ,2(1-\mu );z)\right] . \end{aligned} \end{aligned}$$

Thus one can check, using identity (3.6), that

$$\begin{aligned} \partial _t W_1(t,s,|\xi |)&=\, i s t^{m} e^{-(z+\zeta )/2} |\xi | [\Phi (\mu +1,2\mu +1;z)-\Phi (\mu ,2\mu ;z)] \Phi (1-\mu ,2(1-\mu );\zeta ) \\&=\, i s t^{m} e^{-\zeta /2} |\xi | [e^{z/2} {H}^0_+(z) + e^{-z/2} {H}^0_-(z) +] \Phi (1-\mu ,2(1-\mu );\zeta ) \\&=\, i s t^{m} |\xi | \left[ e^{[1+\tau ^{m+1}]\zeta /2} {H}^0_+(z) {H}^1_+(\zeta ) + e^{-[1-\tau ^{m+1}]\zeta /2} {H}^0_+(z) {H}^1_-(\zeta ) \right. \\&\quad \left. + e^{[1-\tau ^{m+1}]\zeta /2} {H}^0_-(z) {H}^1_+(\zeta ) + e^{-[1+\tau ^{m+1}]\zeta /2} {H}^0_-(z) {H}^1_-(\zeta ) \right] \\ \partial _t W_2(t,s,|\xi |)&=\, e^{-(z+\zeta )/2} \Phi (\mu ,2\mu ;\zeta )\left[ \Phi (1-\mu ,1-2\mu ;z)\right. \\&\quad \left. - i t^{m+1} |\xi | \Phi (1-\mu ,2(1-\mu );z)\right] \\&=\, e^{-\zeta /2} \Phi (\mu ,2\mu ;\zeta ) [e^{z/2} H^2_+(z) + e^{-z/2} H^2_-(z)] \\&=\, e^{[1+\tau ^{m+1}]\zeta /2} {H}^2_+(z) {H}^3_+(\zeta ) + e^{-[1-\tau ^{m+1}]\zeta /2} {H}^2_+(z) {H}^3_-(\zeta ) \\&\quad + e^{[1-\tau ^{m+1}]\zeta /2} {H}^2_-(z) {H}^3_+(\zeta ) + e^{-[1+\tau ^{m+1}]\zeta /2} {H}^2_-(z) {H}^3_-(\zeta ) \end{aligned}$$

where for the simplicity we set

$$\begin{aligned} {H}^0_\pm (z)&:=\, \frac{\Gamma (2\mu +1)}{\Gamma \left( \mu +\frac{1}{2} \pm \frac{1}{2} \right) } H_\pm (\mu +1,2\mu +1;z) - \frac{\Gamma (2\mu )}{\Gamma (\mu )} H_\pm (\mu ,2\mu ;z) , \\ {H}^1_{\pm }(\zeta )&:=\, \frac{\Gamma (2(1-\mu ))}{\Gamma (1-\mu )} {H}_{\pm }(1-\mu ,2(1-\mu );\zeta ), \end{aligned}$$

and

$$\begin{aligned} H^2_\pm (z)&:=\, \frac{\Gamma (1-2\mu )}{\Gamma \left( \frac{1}{2}\pm \frac{1}{2}-\mu \right) } H_\pm (1-\mu ,1-2\mu ;z) \\&\quad -i t^{m+1} |\xi | \frac{\Gamma (2(1-\mu ))}{\Gamma (1-\mu )} H_\pm (1-\mu ,2(1-\mu );z) , \\ H^3_\pm (\zeta )&:=\, \frac{\Gamma (2\mu )}{\Gamma (\mu )} H_\pm (\mu ,2\mu ;\zeta ). \end{aligned}$$

1.1 Estimates at low frequencies for \(\partial _t W_1(t,s,D_x)\)

Let us consider the Fourier multiplier

$$\begin{aligned} \mathcal {F}^{-1}_{\xi \rightarrow x}\left( X_0(\phi (t)\xi ) |\xi |^{-\sigma } \partial _t W_1(t,s,|\xi |) {\widehat{\psi }}\right) . \end{aligned}$$

By the change of variables \(\eta := \phi (t)\xi \) and \(x:=\phi (t)y\) we get

$$\begin{aligned}&\left\Vert F^{-1}_{\xi \rightarrow x} \left( X_0(\phi (t)\xi ) |\xi |^{-\sigma } \partial _t W_1(t,s,|\xi |) {\widehat{\psi }} \right) \right\Vert _{L^{q'}} \\&\quad \lesssim \tau ^{-1} t^{(n/q'-n+\sigma )(m+1)} \left\Vert T_0 * \mathcal {F}^{-1}_{\eta \rightarrow y}\left( {\widehat{\psi }}(\eta /\phi (t))\right) \right\Vert _{L^{q'}} \end{aligned}$$

where

$$\begin{aligned} T_0&:=\, \mathcal {F}^{-1}_{\eta \rightarrow y} \left( X_0(\eta ) |\eta |^{1-\sigma } e^{-i[1+1/\tau ^{m+1}]|\eta |} {\Phi }_0(\mu ;\tau ;|\eta |) \right) \\ {\Phi }_0(\mu ;\tau ;|\eta |)&:=\, [\Phi (\mu +1,2\mu +1;2i|\eta |)-\Phi (\mu ,2\mu ;2i|\eta |)] \\&\quad \times \Phi (1-\mu ,2(1-\mu );2i|\eta |/\tau ^{m+1}) \\&=\, O(|\eta |)[1+\tau ^{-(m+1)}O(|\eta |)]. \end{aligned}$$

The last equality above is implied by (3.2), from which we deduce \(|{\Phi }_0(\mu ;\tau ;|\eta |)|\lesssim 1\) if \(|\eta |\le 3/4\). So, for any \({\lambda }>0\), we obtain

$$\begin{aligned} \mathop {\mathrm {meas}}\limits \{ \eta \in \mathbb {R}^n :|\mathcal {F}_{y \rightarrow \eta }(T_0)| \ge {\lambda }\}&\le \mathop {\mathrm {meas}}\limits \{ \eta \in \mathbb {R}^n :|\eta | \le 3/4\text { and } |\eta |^{1-\sigma } > rsim {\lambda }\} \\&\lesssim {\left\{ \begin{array}{ll} 1 &{} \text { if } 0 < {\lambda }\le 1, \\ 0 &{} \text { if } {\lambda }\ge 1 \text { and } \sigma \le 1, \\ {\lambda }^{-\frac{n}{\sigma -1}} &{} \text { if } {\lambda }\ge 1 \text { and } \sigma > 1, \end{array}\right. } \\&\lesssim {\lambda }^{-b}, \end{aligned}$$

where \(1<b<\infty \) if \(\sigma \le 1\) and \(1 <b \le \frac{n}{\sigma -1}\) if \(\sigma >1\). Hence by Lemma 4, we get \(T_0 \in L^{q'}_q\) for \(1<q\le 2 \le q'<\infty \) and \(\sigma \le 1 + n (\frac{1}{q}-\frac{1}{q'})\).

Then we obtain the Hardy–Littlewood type inequality

$$\begin{aligned} \left\Vert F^{-1}_{\xi \rightarrow x} \left( X_0(\phi (t)\xi ) |\xi |^{-\sigma } \partial _t W_1(t,s,|\xi |) {\widehat{\psi }} \right) \right\Vert _{L^{q'}} \lesssim \tau ^{-1} t^{\left[ \sigma -n \left( \frac{1}{q} - \frac{1}{q'} \right) \right] (m+1)} \left\Vert \psi \right\Vert _{L^q}. \end{aligned}$$

Observing that, by the assumption on the range of \(\sigma \),

$$\begin{aligned} \tau ^{-1} t^{\left[ \sigma -n \left( \frac{1}{q} - \frac{1}{q'} \right) \right] (m+1)}&= \tau ^{-\left[ 1-\mu + n \left( \frac{1}{q} - \frac{1}{q'} \right) -\sigma \right] (m+1)} \tau ^{m/2} s^{\left[ \sigma -n \left( \frac{1}{q} - \frac{1}{q'} \right) \right] (m+1)} \\ {}&\le \tau ^{m/2} s^{\left[ \sigma -n \left( \frac{1}{q} - \frac{1}{q'} \right) \right] (m+1)}, \end{aligned}$$

we finally get

$$\begin{aligned} \left\Vert F^{-1}_{\xi \rightarrow x} \left( X_0(\phi (t)\xi ) |\xi |^{-\sigma } \partial _t W_1(t,s,|\xi |) {\widehat{\psi }} \right) \right\Vert _{L^{q'}} \lesssim \tau ^{m/2} s^{\left[ \sigma -n \left( \frac{1}{q} - \frac{1}{q'} \right) \right] (m+1)} \left\Vert \psi \right\Vert _{L^q}. \end{aligned}$$
(B. 1)

1.2 Estimates at intermediate frequencies for \(\partial _t W_1(t,s,D_x)\)

We proceed similarly as before. Let us consider now the Fourier multiplier

$$\begin{aligned} \mathcal {F}^{-1}_{\xi \rightarrow x}\left( X_1(\phi (s)\xi ) |\xi |^{-\sigma } \partial _t W_1(t,s,|\xi |) {\widehat{\psi }}\right) . \end{aligned}$$

Exploiting this time the change of variables \(\eta := \phi (s)\xi \) and \(x:=\phi (s)y\), we get

$$\begin{aligned}&\left\Vert F^{-1}_{\xi \rightarrow x} \left( X_1(\phi (s)\xi ) |\xi |^{-\sigma } \partial _t W_1(t,s,|\xi |) {\widehat{\psi }} \right) \right\Vert _{L^{q'}} \\&\quad \lesssim \tau ^{m/2} s^{(n/q'-n+\sigma )(m+1)} \left\Vert T_1 * \mathcal {F}^{-1}_{\eta \rightarrow y}\left( {\widehat{\psi }}(\eta /\phi (s))\right) \right\Vert _{L^{q'}} \end{aligned}$$

where

$$\begin{aligned} T_1&:= \mathcal {F}^{-1}_{\eta \rightarrow y} \left( X_1(\eta ) |\eta |^{1-\sigma } e^{-i[1+\tau ^{m+1}]|\eta |} {\Phi }_1(\mu ;\tau ;|\eta |) \right) \\ {\Phi }_1(\mu ;\tau ;|\eta |)&:= \tau ^{m/2} [\Phi (\mu +1,2\mu +1;2i\tau ^{m+1}|\eta |)-\Phi (\mu ,2\mu ;2i\tau ^{m+1}|\eta |)] \\&\quad \times \Phi (1-\mu ,2(1-\mu );2i|\eta |). \end{aligned}$$

Taking in account (3.2) and (3.5), we infer that

$$\begin{aligned} |\Phi _1(\mu ;\tau ;|\eta |)| \lesssim \tau ^{m/2} (\tau ^{m+1}|\eta |)^{-\mu } = |\eta |^{-\mu } \quad \text { on } \mathop {\mathrm {supp}}\limits X_1(\eta ) \subseteq \left[ (2\tau ^{m+1})^{-1},1 \right] , \end{aligned}$$

and thus, for any \({\lambda }>0\), we obtain

$$\begin{aligned} \mathop {\mathrm {meas}}\limits \{ \eta \in \mathbb {R}^n :|\mathcal {F}_{y \rightarrow \eta }(T_1)| \ge {\lambda }\}&\le \mathop {\mathrm {meas}}\limits \{ \eta \in \mathbb {R}^n :|\eta | \le 1 \text { and } |\eta |^{1-\mu -\sigma } > rsim {\lambda }\} \\&\lesssim {\left\{ \begin{array}{ll} 1 &{} \text {if } 0 < {\lambda }\le 1, \\ 0 &{} \text {if } {\lambda }\ge 1 \text { and } \sigma \le 1-\mu ,\\ {\lambda }^{-\frac{n}{\sigma -1+\mu }} &{} \text {if } {\lambda }\ge 1 \text { and } \sigma > 1-\mu , \end{array}\right. } \\&\lesssim {\lambda }^{-b}, \end{aligned}$$

where \(1<b<\infty \) if \(\sigma \le 1-\mu \) and \(1<b \le \frac{n}{\sigma -1+\mu }\) if \(\sigma >1-\mu \). Hence by Lemma 4, we get \(T \in L^{q'}_q\) for \(1<q\le 2 \le q'<\infty \) and \(\sigma \le 1-\mu + n (\frac{1}{q}-\frac{1}{q'})\).

Then we reach

$$\begin{aligned} \left\Vert F^{-1}_{\xi \rightarrow x} \left( X_1(\phi (s)\xi ) |\xi |^{-\sigma } \partial _t W_1(t,s,|\xi |) {\widehat{\psi }} \right) \right\Vert _{L^{q'}} \lesssim \tau ^{m/2} s^{\left[ \sigma -n \left( \frac{1}{q} - \frac{1}{q'} \right) \right] (m+1)} \left\Vert \psi \right\Vert _{L^q}. \end{aligned}$$
(B. 2)

1.3 Estimates at high frequencies for \(\partial _t W_1(t,s,D_x)\)

Finally, we want to estimate the Fourier multiplier

$$\begin{aligned} \mathcal {F}^{-1}_{\xi \rightarrow x}\left( X_2(\phi (s)\xi ) |\xi |^{-\sigma } \partial _t W_1(t,s,|\xi |) {\widehat{\psi }}\right) . \end{aligned}$$

We choose a set of functions \(\{ \chi _k \}_{k\ge 0}\) as in the statement of Lemma 5.

1.3.1 \(L^1-L^\infty \) estimates

We claim that, for \(k\ge 0\),

$$\begin{aligned} \left\Vert \mathcal {F}^{-1}_{\xi \rightarrow x}\left( X_2(\phi (s)\xi ) \, \chi _k(\phi (s) \xi ) \, |\xi |^{-\sigma } \partial _t W_1(t,s,|\xi |) \right) \right\Vert _{L^\infty } \lesssim 2^{k\left( n-\sigma \right) } \tau ^{m/2} s^{(\sigma -n)(m+1)}. \end{aligned}$$
(B. 3)

Exploiting the change of variables \(\phi (s)\xi =2^k \eta \) and \(2^k x=\phi (s)y\), by the expression of the symbol \(\partial _t W_1(t,s,|\xi |)\), we obtain

$$\begin{aligned} \left\Vert \mathcal {F}^{-1}_{\xi \rightarrow x}\left( X_2(\phi (s)\xi ) \, \chi _k(\phi (s) \xi ) \, |\xi |^{-\sigma } \partial _t W_1(t,s,|\xi |) \right) \right\Vert _{L^\infty } \nonumber \\ \lesssim 2^{k(n-\sigma +1)} \tau ^m s^{(\sigma -n)(m+1)} [A^+_+ + A^+_- + A^-_+ + A^-_-] \end{aligned}$$
(B. 4)

where

$$\begin{aligned} A^+_\pm :=&\, \left\Vert \mathcal {F}^{-1}_{\eta \rightarrow y} \left( e^{i[ \pm 1 + \tau ^{m+1} ]2^k|\eta |} v^{+,\pm }_k(\eta ) \right) \right\Vert _{L^\infty }, \\ A^-_\pm :=&\, \left\Vert \mathcal {F}^{-1}_{\eta \rightarrow y} \left( e^{i[ \pm 1 - \tau ^{m+1}]2^k|\eta |} v^{-,\pm }_k(\eta ) \right) \right\Vert _{L^\infty }, \end{aligned}$$

and

$$\begin{aligned} v^{+,\pm }_k(\eta ) :=&\, X_2(2^k \eta )\chi (\eta ) |\eta |^{1-\sigma } {H}^0_+(2i\tau ^{m+1}2^{k}|\eta |) {H}^1_\pm (2i2^{k}|\eta |), \\ v^{-,\pm }_k(\eta ) :=&\, X_2(2^k \eta )\chi (\eta ) |\eta |^{1-\sigma } {H}^0_-(2i\tau ^{m+1}2^{k}|\eta |) {H}^1_\pm (2i2^{k}|\eta |). \end{aligned}$$

The functions \(v^{\pm ,\pm }_k(\eta )\) are smooth and compactly supported on \(\{\eta \in \mathbb {R}^n :1/2 \le |\eta | \le 2\}\).

When \(k=0\), it is easy to see by estimates (3.7)–(3.8) that

$$\begin{aligned} \left\Vert \mathcal {F}^{-1}_{\eta \rightarrow y} \left( e^{i[\pm 1+\tau ^{m+1}]|\eta |} v^{+,\pm }_0(\eta ) \right) \right\Vert _{L^\infty } \le \left\Vert v^{+,\pm }_0\right\Vert _{L^1} \lesssim \tau ^{-(m+1)\mu } \left\Vert X_2(\eta )\chi (\eta )|\eta |^{-\sigma }\right\Vert _{L^1} \lesssim \tau ^{- m/2}. \end{aligned}$$

For \(k\ge 1\), by Lemma 6 we have, for some integer \(N>0\), that

$$\begin{aligned} \left\Vert \mathcal {F}^{-1}_{\eta \rightarrow y} \left( e^{i[\pm 1+\tau ^{m+1}]2^k|\eta |} v^{+,\pm }_k(\eta ) \right) \right\Vert _{L^\infty } \lesssim (1+[\pm 1 + \tau ^{m+1}]2^k)^{-\frac{n-1}{2}} \sum _{|\alpha |\le N} \left\Vert \partial _\eta ^\alpha v^{+,\pm }_k\right\Vert _{L^1}. \end{aligned}$$
(B. 5)

Since \(X_2(2^k\eta )\chi (\eta )=\chi (\eta )\) for \(k\ge 1\), by estimates (3.7)–(3.8) and Leibniz rule we infer

$$\begin{aligned} |\partial ^\alpha _\eta v^{+,\pm }_k(\eta )|&= \left|\sum _{\gamma \le \beta \le \alpha } \left( {\begin{array}{c}\alpha \\ \beta \end{array}}\right) \left( {\begin{array}{c}\beta \\ \gamma \end{array}}\right) \partial ^{\alpha -\beta }_\eta \left( \chi (\eta )|\eta |^{1-\sigma } \right) \partial ^{\beta -\gamma }_\eta {H}^0_+(2i\tau ^{m+1}2^{k}|\eta |) \partial _\eta ^\gamma {H}^1_\pm (2i2^{k}|\eta |) \right|\\&\lesssim \tau ^{-m/2} 2^{-k} \sum _{\beta \le \alpha } C_{\mu ,\alpha ,\beta } {\mathbf {1}}_{\left[ {1}/{2},2\right] }(\eta ) |\eta |^{-1-|\beta |} \end{aligned}$$

where \({\mathbf {1}}_{\left[ {1}/{2},2\right] }(\eta )=1\) for \(1/2\le |\eta | \le 2\) and \({\mathbf {1}}_{\left[ {1}/{2},2\right] }(\eta )=0\) otherwise. From the latter estimate and (B. 5), we get

$$\begin{aligned} A^+_\pm \lesssim \tau ^{-m/2} 2^{-k} (1+[\pm 1+\tau ^{m+1}])^{-\frac{n-1}{2}} \le \tau ^{-m/2} 2^{-k}. \end{aligned}$$

Similarly we obtain also that \(A^-_\pm \lesssim \tau ^{-m/2} 2^{-k}\). Thus, inserting in (B. 4) we obtain (B. 3), which combined with the Young inequality give us the \(L^1-L^\infty \) estimate

$$\begin{aligned}&\left\Vert \mathcal {F}^{-1}_{\xi \rightarrow x}\left( X_2(\phi (s)\xi ) \, \chi _k(\phi (s) \xi ) \, |\xi |^{-\sigma } \partial _t W_1(t,s,|\xi |) {\widehat{\psi }}\right) \right\Vert _{L^\infty } \nonumber \\&\quad \lesssim 2^{k\left( n-\sigma \right) } \tau ^{m/2} s^{(\sigma -n)(m+1)} \left\Vert \psi \right\Vert _{L^1}. \end{aligned}$$
(B. 6)

1.3.2 \(L^2 - L^2\) estimates

By the Plancherel formula, Hölder inequality, estimate (3.5) and the substitution \(\phi (s)\xi =2^k\eta \), we obtain

$$\begin{aligned}&\left\Vert \mathcal {F}^{-1}_{\xi \rightarrow x}\left( X_2(\phi (s)\xi ) \, \chi _k(\phi (s) \xi ) \, |\xi |^{-\sigma } \partial _t W_1(t,s,|\xi |) {\widehat{\psi }}\right) \right\Vert _{L^2} \nonumber \\&\quad \le \left\Vert X_2(\phi (s)\xi ) \, \chi _k(\phi (s) \xi ) \, |\xi |^{-\sigma } \partial _t W_1(t,s,|\xi |) \right\Vert _{L^\infty } \left\Vert \psi \right\Vert _{L^2} \\&\quad \lesssim 2^{-k\sigma } \tau ^{m/2} s^{\sigma (m+1)} \left\Vert \psi \right\Vert _{L^2}.\nonumber \end{aligned}$$
(B. 7)

1.3.3 \(L^q-L^{q'}\) estimates

The interpolation between (B. 6) and (B. 7) give us the estimates on the conjugate line

$$\begin{aligned}&\left\Vert \mathcal {F}^{-1}_{\xi \rightarrow x}\left( X_2(\phi (s)\xi ) \, \chi _k(\phi (s) \xi ) \, |\xi |^{-\sigma } \partial _t W_1(t,s,|\xi |) {\widehat{\psi }}\right) \right\Vert _{L^{q'}} \nonumber \\&\quad \lesssim 2^{k\left[ n \left( \frac{1}{q}-\frac{1}{q'} \right) -\sigma \right] } \tau ^{m/2} s^{\left[ \sigma - n \left( \frac{1}{q}-\frac{1}{q'}\right) \right] (m+1)} \left\Vert \psi \right\Vert _{L^q}, \end{aligned}$$
(B. 8)

where \(1<q\le 2\). Now, choosing \(n \left( \frac{1}{q}-\frac{1}{q'} \right) \le \sigma \), putting together (B. 1), (B. 2) and (B. 8) with an application of Lemma 5, we finally obtain the \(L^q-L^{q'}\) estimate for \(\partial _t W_1(t,s,D_x)\).

1.4 Estimates for \(\partial _t W_2(t,s,D_x)\)

For the intermediate and high frequencies cases, proceeding as above we straightforwardly obtain, under the constrains \(\sigma \le \mu + n (\frac{1}{q}-\frac{1}{q'})\) and \(n \left( \frac{1}{q}-\frac{1}{q'} \right) \le \sigma \) respectively, that

$$\begin{aligned} \left\Vert F^{-1}_{\xi \rightarrow x} \left( X_j(\phi (s)\xi ) |\xi |^{-\sigma } \partial _t W_2(t,s,|\xi |) {\widehat{\psi }} \right) \right\Vert _{L^{q'}} \lesssim \tau ^{m/2} s^{\left[ \sigma -n \left( \frac{1}{q} - \frac{1}{q'} \right) \right] (m+1)} \left\Vert \psi \right\Vert _{L^q}. \end{aligned}$$
(B. 9)

for \(j\in \{1,2\}\) and \(1<q\le 2 \le q'<\infty \).

At low frequencies, by computations similar to that for \(\partial _tW_1(t,s,D_x)\), we obtain

$$\begin{aligned}&\left\Vert F^{-1}_{\xi \rightarrow x} \left( X_0(\phi (t)\xi ) |\xi |^{-\sigma } \partial _t W_2(t,s,|\xi |) {\widehat{\psi }} \right) \right\Vert _{L^{q'}} \\&\quad \lesssim t^{(n/q'-n+\sigma )(m+1)} \left\Vert T_0 * \mathcal {F}^{-1}_{\eta \rightarrow y}\left( {\widehat{\psi }}(\eta /\phi (t))\right) \right\Vert _{L^{q'}} \end{aligned}$$

where this time

$$\begin{aligned} T_0 :=&\, \mathcal {F}^{-1}_{\eta \rightarrow y} \left( X_0(\eta ) |\eta |^{-\sigma } e^{-i[1+1/\tau ^{m+1}]|\eta |} {\Phi }_0(\mu ;\tau ;|\eta |) \right) \\ {\Phi }_0(\mu ;\tau ;|\eta |) :=&\, \Phi (\mu ,2\mu ;2i|\eta |/\tau ^{m+1}) \\&\times [\Phi (1-\mu ,1-2\mu ;2i|\eta |)-i(m+1)|\eta |\Phi (1-\mu ,2(1-\mu );2i|\eta |)] \\ =&\, [1+\tau ^{-(m+1)}O(|\eta |)][1+O(|\eta |)], \end{aligned}$$

and hence again \(|{\Phi }_0(\mu ;\tau ;|\eta |)|\lesssim 1\) if \(|\eta |\le 3/4\). For any \({\lambda }>0\), we get

$$\begin{aligned} \mathop {\mathrm {meas}}\limits \{ \eta \in \mathbb {R}^n :|\mathcal {F}_{y \rightarrow \eta }(T_0)| \ge {\lambda }\} \le \mathop {\mathrm {meas}}\limits \{ \eta \in \mathbb {R}^n :|\eta | \le 3/4 \text { and } |\eta |^{-\sigma } > rsim {\lambda }\} \lesssim {\lambda }^{-b}, \end{aligned}$$

where \(1<b<\infty \) if \(\sigma \le 0\) and \(1 <b \le \frac{n}{\sigma }\) if \(\sigma >0\). Another application of Lemma 4 tell us that \(T_0 \in L^{q'}_q\) for \(1<q\le 2 \le q'<\infty \) with the condition on \(\sigma \) given by \(\sigma \le n (\frac{1}{q}-\frac{1}{q'})\). Finally, similarly as in the case of \(\partial _t W_1(t,s,D_x)\) we conclude that (B. 9) holds true also for \(j=0\).

The proof of estimates (iv) in Theorem 3 is thus reached combining (B. 9) for \(j\in \{0,1,2\}\), and putting together all the constrains on the range of \(\sigma \), we are forced to choose \(\sigma = n (\frac{1}{q}-\frac{1}{q'})\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, NA., Schiavone, N.M. Blow-up and lifespan estimate for generalized Tricomi equations related to Glassey conjecture. Math. Z. 301, 3369–3393 (2022). https://doi.org/10.1007/s00209-022-03017-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-022-03017-4

Keywords

Mathematics Subject Classification

Navigation