Skip to main content
Log in

Another look at Zagier’s formula for multiple zeta values involving Hoffman elements

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

In this paper, we give an elementary account into Zagier’s formula for multiple zeta values involving Hoffman elements. Our approach allows us to obtain direct proof in a special case via rational zeta series involving the coefficient \(\zeta (2n)\). This formula plays an important role in proving Hoffman’s conjecture which asserts that every multiple zeta value of weight k can be expressed as a \(\mathbb {Q}\)-linear combinations of multiple zeta values of the same weight involving 2’s and 3’s. Also, using a similar hypergeometric argument via rational zeta series, we produce a new Zagier-type formula for the multiple special Hurwitz zeta values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrews, G.E., Askey, R., Roy, R.: Special Functions, Cambridge University Press, (2000)

  2. Ayoub, R.: Euler and the zeta function. Am. Math. Monthly 81, 1067–1086 (1974)

    Article  MathSciNet  Google Scholar 

  3. Borwein, J.M., Bradley, D.M., Crandall, R.E.: Computational strategies for the Riemann zeta function. J. Comp. Appl. Math. 121, 247–296 (2000)

    Article  MathSciNet  Google Scholar 

  4. Borwein, J., Chamberland, M.: Integer powers of arcsin. Int. J. Math. Math. Sci. 2007 (2007), Article ID 19381, 10pp

  5. Brown, F.: Mixed Tate motives over \({\mathbb{Z}}\). Ann. Math. (2) 175, 949–976 (2012)

    Article  MathSciNet  Google Scholar 

  6. Brown, F., Schnetz, O.: Single-valued multiple polylogarithms and a proof of the zig-zag conjecture. J. Number Theory 148, 478–506 (2015)

    Article  MathSciNet  Google Scholar 

  7. Burgos G., Fresan, J.: Multiple zeta values: from numbers to motives. Clay Math. Proc. (to appear)

  8. Charlton, S.: \(\zeta (\{\{2\}^m, 1, \{2\}^m, 3\}^n, \{2\}^m)/\pi ^{4n+2m(2n+1)}\) is irrational. J. Number Theory 148, 463–477 (2015)

    Article  MathSciNet  Google Scholar 

  9. Chu, W., Zheng, D.: Infinite series with harmonic numbers and central binomial coefficients. Int. J. Number Theory 5, 429–448 (2009)

    Article  MathSciNet  Google Scholar 

  10. Chung, C.-L.: On the sum relation of multiple Hurwitz zeta functions. Quaest. Math. 42, 297–305 (2019)

    Article  MathSciNet  Google Scholar 

  11. Clausen, T.: Uber die function \(\sin \phi +\frac{1}{2^2}\sin 2\phi +\frac{1}{3^2}\sin 3\phi +\)etc. J. Reine Angew. Math. 8, 298–300 (1832)

    MathSciNet  Google Scholar 

  12. Hoffman, M.E.: Multiple harmonic series. Pac. J. Math. 152, 275–290 (1992)

    Article  MathSciNet  Google Scholar 

  13. Hoffman, M.E.: The algebra of multiple harmonic series. J. Algebra 194, 477–495 (1997)

    Article  MathSciNet  Google Scholar 

  14. Hoffman, M.E.: An odd variant of multiple zeta values. Commun. Number Theory Phys. 13, 529–567 (2019)

    MathSciNet  MATH  Google Scholar 

  15. Leshchiner, D.: Some new identities for \(\zeta (k)\). J. Number Theory 13, 355–362 (1981)

    Article  MathSciNet  Google Scholar 

  16. Li, Z.-H.: Another proof of Zagier’s evaluation formula of the multiple zeta values \(\zeta (2, \ldots , 2, 3, 2, \ldots , 2)\). Math. Res. Lett. 20, 947–950 (2013)

    Article  MathSciNet  Google Scholar 

  17. Lupu, C.: Analytic Aspects of the Riemann Zeta and multiple zeta values. PhD Thesis, available at http://d-scholarship.pitt.edu/35330/, University of Pittsburgh (2018)

  18. Ram Murty, M., Sinha, K.: Multiple Hurwitz zeta functions. Proc. Sympos. Pure Math. 75, 135–156 (2006)

    Article  MathSciNet  Google Scholar 

  19. Orr, D.: Generalized rational zeta series for \(\zeta (2n)\) and \(\zeta (2n+1)\). Integral Transf. Spec. Funct. 28, 966–987 (2017)

    Article  MathSciNet  Google Scholar 

  20. Rainville, E.D.: Special Functions. Chelsea Publishing Co., New York (1971)

    MATH  Google Scholar 

  21. Shen, Z., Jia, L.: Some identities for multiple Hurwitz zeta values. J. Number Theory 179, 256–267 (2017)

    Article  MathSciNet  Google Scholar 

  22. Sun, Z.W.: New series for some special values of \(L\)-functions. Nanjiang Univ. J. Math. Biquarterly 32, 189–218 (2015)

    MathSciNet  MATH  Google Scholar 

  23. Zagier, D.: Values of zeta functions and their applications, in Proceedings of the First European Congress of Mathematics, Vol. II (Paris, 1992), A. Joseph et. al. (eds.), Birkhäuser, Basel, 1994, pp. 497–512

  24. Zagier, D.: Multiple zeta values, Unpublished manuscript, Bonn (1995)

  25. Zagier, D.: Evaluation of the multiple zeta values \(\zeta (2, \ldots , 2, 3, 2, \ldots , 2)\). Ann. Math. (2) 175, 977–1000 (2012)

    Article  MathSciNet  Google Scholar 

  26. Zhao, J.: Sum formula of multiple Hurwitz-zeta values. Forum Math. 27, 929–936 (2015)

    MathSciNet  MATH  Google Scholar 

  27. Zhao, J.: Multiple Zeta Functions, Multiple Polylogarithms, and their Special Values. World Scientific, Singapore (2016)

    Book  Google Scholar 

Download references

Acknowledgements

The author would like to thank Tom Hales, Bogdan Ion, Camil Muscalu, Derek Orr for fruitful conversations which preceded this work, and to Don Zagier for inspiring conversations on the subject. Also, many thanks to my advisors Piotr Hajlasz and William C. Troy for encouragements through my PhD studies. This paper is part of author’s PhD thesis at the University of Pittsburgh.

Author information

Authors and Affiliations

Authors

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The Clausen function (integral) is defined by

$$\begin{aligned} \displaystyle {\text {Cl}}_{2}(\theta )=-\int _0^{\theta }\log \left( 2\sin \frac{t}{2}\right) dt=\sum _{k=1}^{\infty }\frac{\sin (k\theta )}{k^2}, \end{aligned}$$

and its Taylor series expansion is given by

$$\begin{aligned} \displaystyle \frac{{\text {Cl}}_{2}(\theta )}{\theta }=1-\log |\theta |+\sum _{n=1}^{\infty }\frac{\zeta (2n)}{n(2n+1)}\left( \frac{\theta }{2\pi }\right) ^{2n}, |\theta |<2\pi . \end{aligned}$$

The higher order Clausen functions are

$$\begin{aligned} \displaystyle {\text{ Cl }}_{2m}(\theta )=\sum _{k=1}^{\infty }\frac{\sin (k\theta )}{k^{2m+1}}, {\text{ Cl }}_{2m+1}(\theta )=\sum _{k=1}^{\infty }\frac{\cos (k\theta )}{k^{2m+1}}. \end{aligned}$$

Using the properties of the Riemann zeta function, we have the following particular values:

$$\begin{aligned} \displaystyle {\text {Cl}}_{2m}(\pi )=0, {\text {Cl}}_{2m+1}(\pi )=-\frac{(4^m-1)\zeta (2m+1))}{4^m} \end{aligned}$$

and

$$\begin{aligned} \displaystyle {\text {Cl}}_{2m}\left( \frac{\pi }{2}\right) =\beta (2m), {\text {Cl}}_{2m+1}\left( \frac{\pi }{2}\right) =-\frac{(4^m-1)\zeta (2m+1)}{2^{4m+1}}, \end{aligned}$$

where \(\beta (s)=\sum _{n=0}^{\infty }\frac{(-1)^n}{(2n+1)^s}, {\text {Res}}>0\) is the Dirichlet beta function.

Moreover,

$$\begin{aligned} \displaystyle \frac{d}{d\theta }{\text {Cl}}_{2m}(\theta )={\text {Cl}}_{2m-1}(\theta ), \frac{d}{d\theta }{\text {Cl}}_{2m+1}(\theta )=-{\text {Cl}}_{2m}(\theta ), \end{aligned}$$

and

$$\begin{aligned} \displaystyle \int _0^{\theta }{\text {Cl}}_{2m}(x)dx=\zeta (2m+1)-{\text {Cl}}_{2m+1}(\theta ), \int _0^{\theta }{\text {Cl}}_{2m-1}(x)dx={\text {Cl}}_{2m}(\theta ). \end{aligned}$$

Proof of the Lemma 2.6

(see also [19]). Theorem 2.4 for \(z=\frac{1}{2}\) gives us

$$\begin{aligned} \displaystyle \int _0^{\frac{\pi }{2}}x^p\cot xdx= & {} \left( \frac{\pi }{2}\right) ^p\left( \log 2+\sum _{k=1}^{[p/2]}\frac{p!(-1)^k(4^k-1)}{(p-2k)!(2\pi )^{2k}}\zeta (2k+1)\right) \\&+\delta _{\left[ \frac{p}{2}\right] , \frac{p}{2}}\frac{p!(-1)^{\frac{p}{2}}\zeta (p+1)}{2^p}. \end{aligned}$$

On the other hand, since \(\cot x=-2\sum \nolimits _{n=0}^{\infty }\frac{\zeta (2n)}{\pi ^{2n}}\cdot x^{2n-1}, |x|<\pi \), by integration and Fubini’s theorem, we obtain

$$\begin{aligned}&\displaystyle \int _0^{\frac{\pi }{2}}x^p\cot xdx=\int _0^{\frac{\pi }{2}}x^p\left( -2\sum _{n=0}^{\infty }\frac{\zeta (2n)}{\pi ^{2n}}\cdot x^{2n-1}\right) dx\\&\quad =-2\sum _{n=0}^{\infty }\frac{\zeta (2n)}{\pi ^{2n}}\int _0^{\frac{\pi }{2}}x^{2n+p-1}dx \end{aligned}$$

or equivalently,

$$\begin{aligned} \displaystyle \int _0^{\frac{\pi }{2}}x^p\cot xdx=-2\left( \frac{\pi }{2}\right) ^p\sum _{n=0}^{\infty }\frac{\zeta (2n)}{(2n+p)2^{2n}}, \end{aligned}$$

and the lemma follows immediately.\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lupu, C. Another look at Zagier’s formula for multiple zeta values involving Hoffman elements. Math. Z. 301, 3127–3140 (2022). https://doi.org/10.1007/s00209-022-02990-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-022-02990-0

Keywords

Mathematics Subject Classification

Navigation