Skip to main content
Log in

The HcscK equations in symplectic coordinates

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

The Donaldson–Fujiki Kähler reduction of the space of compatible almost complex structures, leading to the interpretation of the scalar curvature of Kähler metrics as a moment map, can be lifted canonically to a hyperkähler reduction. Donaldson proposed to consider the corresponding vanishing moment map conditions as (fully nonlinear) analogues of Hitchin’s equations, for which the underlying bundle is replaced by a polarised manifold. However this construction is well understood only in the case of complex curves. In this paper we study Donaldson’s hyperkähler reduction on abelian varieties and toric manifolds. We obtain a decoupling result, a variational characterisation, a relation to K-stability in the toric case, and prove existence and uniqueness under suitable assumptions on the “Higgs tensor”. We also discuss some aspects of the analogy with Higgs bundles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Notice that there is a sign misprint in the statement; the correct sign can be found in [16, equation (3.3.6)].

References

  1. Abreu, M.: Kähler geometry of toric varieties and extremal metrics. Int. J. Math. 9(6), 641–651 (1998). https://doi.org/10.1142/S0129167X98000282

    Article  MATH  Google Scholar 

  2. Apostolov, V.: The Kähler geometry of toric manifolds. Lecture Notes of CIRM winter school. http://profmath.uqam.ca/~apostolo/papers/toric-lecture-notes.pdf (2019)

  3. Atiyah, M.F.: Convexity and commuting Hamiltonians. Bull. Lond. Math. Soc. 14(1), 1–15 (1982)

    Article  MathSciNet  Google Scholar 

  4. Autonne, L.: Sur les matrices hypohermitiennes et sur les matrices unitaires. Ann. de l’Université de Lyon 38, 1–77 (1915)

    MATH  Google Scholar 

  5. Berman, R.J., Darvas, T., Lu, C.H.: Regularity of weak minimizers of the K-energy and applications to properness and K-stability. Ann. Sci. Éc. Norm. Supér (4) 53(2), 267–289 (2020). https://doi.org/10.24033/asens.2422

    Article  MathSciNet  MATH  Google Scholar 

  6. Biquard, O., Gauduchon, P.: Hyperkähler metrics on cotangent bundles of Hermitian symmetric spaces. In: Andersen, J. E., Dupont, J., Pedersen, H., Swann, A. (eds.) Geometry and Physics (Aarhus, 1995), Lecture Notes in Pure and Applied Mathematics, vol. 184, pp. 287–298. Dekker, New York (1997)

  7. Caffarelli, L.A.: Interior \(W^{2, p}\) estimates for solutions of the Monge–Ampère equation. Ann. Math. 131(1), 135–150 (1990)

    Article  MathSciNet  Google Scholar 

  8. Chen, X., Cheng, J.: On the constant scalar curvature Kähler metrics, general automorphism group. arXiv preprint arXiv:1801.05907 (2018)

  9. Chen, B., Li, A.M., Sheng, L.: Uniform K-stability for extremal metrics on toric varieties. J. Differ. Equ. 257(5), 1487–1500 (2014). https://doi.org/10.1016/j.jde.2014.05.009

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, B., Li, A.M., Sheng, L.: Extremal metrics on toric surfaces. Adv. Math. 340, 363–405 (2018)

    Article  MathSciNet  Google Scholar 

  11. Codogni, G., Stoppa, J.: Torus equivariant K-stability. In: Codogni, G., Dervan, R., Viviani, F. (eds.) Moduli of K-stable varieties, Springer INdAM Ser., vol. 31, pp. 15–35. Springer, Cham (2019)

  12. Delzant, T.: Hamiltoniens périodiques et images convexes de l’application moment. Bull. Soc. Math. Fr. 116(3), 315–339 (1988)

    Article  Google Scholar 

  13. Donaldson, S.K.: Moment maps in differential geometry. In: Yau, S.-T. (ed.) Surveys in differential geometry, vol. VIII (Boston, MA, 2002), pp. 171–189. International Press, Somerville. https://doi.org/10.4310/SDG.2003.v8.n1.a6 (2003)

  14. Donaldson, S.K.: Remarks on gauge theory, complex geometry and 4-manifold topology. In: Atiyah, M., Iagolnitzer, D. (eds.) Fields Medallists’ lectures, World Science Series, 20th Century Mathematics, vol. 5, pp. 384–403. World Scientific Publication, River Edge (1997)

  15. Donaldson, S.K.: Scalar curvature and projective embeddings I. J. Differ. Geom. 59, 479–522 (2001)

    Article  MathSciNet  Google Scholar 

  16. Donaldson, S.K.: Scalar curvature and stability of toric varieties. J. Differ. Geom. 62(2), 289–349 (2002)

    Article  MathSciNet  Google Scholar 

  17. Donaldson, S.K.: Interior estimates for solutions of Abreu’s equation. Collect. Math. 56(2), 103–142 (2005)

    MathSciNet  MATH  Google Scholar 

  18. Donaldson, S.K.: Constant scalar curvature metrics on toric surfaces. Geom. Funct. Anal. 19(1), 83–136 (2009)

    Article  MathSciNet  Google Scholar 

  19. Feng, R., Székelyhidi, G.: Periodic solutions of Abreu’s equation. Math. Res. Lett. 18(6), 1271–1279 (2011)

    Article  MathSciNet  Google Scholar 

  20. Fujiki, A.: Moduli space of polarized algebraic manifolds and Kähler metrics. Sugaku Expos. 5(2), 173–191 (1992)

    MATH  Google Scholar 

  21. Guillemin, V.: Kaehler structures on toric varieties. J. Differ. Geom. 40(2), 285–309 (1994). http://projecteuclid.org/euclid.jdg/1214455538

  22. Guillemin, V.: Moment Maps and Combinatorial Invariants of Hamiltonian \(T^n\)-spaces, Progress in Mathematics, vol. 122. Birkhäuser Boston, Inc., Boston (1994)

    MATH  Google Scholar 

  23. Guillemin, V., Sternberg, S.: Convexity properties of the moment mapping. Invent. Math. 67(3), 491–513 (1982)

    Article  MathSciNet  Google Scholar 

  24. Hisamoto, T.: Stability and coercivity for toric polarizations. arXiv:1610.07998

  25. Hitchin, N.J.: The self-duality equations on a Riemann surface. Proc. Lond. Math. Soc. (3) 55(1), 59–126 (1987). https://doi.org/10.1112/plms/s3-55.1.59

    Article  MathSciNet  MATH  Google Scholar 

  26. Hodge, T.W.S.: Hyperkähler geometry and Teichmüller space. Thesis (Ph.D.), Imperial College London (2005). Avaiable at spiral.imperial.ac.uk

  27. Le, N.Q.: Global Hölder estimates for 2D linearized Monge–Ampère equations with right-hand side in divergence form. J. Math. Anal. Appl. 485(2), 123865 (2020)

  28. Li, C.: Geodesic rays and stability in the cscK problem. arXiv:2001.01366 (To appear in Ann. Sci. Éc. Norm. Supér)

  29. Magnus, J.R.: On differentiating eigenvalues and eigenvectors. Econom Theory 1(2), 179–191 (1985). http://www.jstor.org/stable/3532409

  30. Magnus, J.R., Neudecker, H.: Matrix Differential Calculus with Applications in Statistics and Econometrics. Wiley Series in Probability and Statistics. Wiley, New York (2019)

    MATH  Google Scholar 

  31. Scarpa, C., Stoppa, J.: Scalar curvature and an infinite-dimensional hyperkähler reduction. Asian J. Math. 24(4), 671–724 (2020)

    Article  MathSciNet  Google Scholar 

  32. Scarpa, C., Stoppa, J.: Solutions to Donaldson’s hyperkähler reduction on a curve. J. Geom. Anal. 31, 2871–2889 (2021). https://doi.org/10.1007/s12220-020-00377-3

    Article  MathSciNet  MATH  Google Scholar 

  33. Takagi, T.: On an algebraic problem related to an analytic theorem of Carathéodory and Fejér and on an allied theorem of Landau. Jpn. J. Math. Trans. Abstr. 1, 83–93 (1924)

    MATH  Google Scholar 

  34. Trautwein, S.: The Donaldson hyperkähler metric on the almost-fuchsian moduli space. ArXiv:1809.00869 [math.DG]

  35. Trudinger, N.S., Wang, X.J.: The Monge–Ampère equation and its geometric applications. Handb. Geom. Anal. 1, 467–524 (2008)

    MATH  Google Scholar 

Download references

Acknowledgements

Part of this work was written while the first author was visiting the University of Illinois at Chicago. The first author wishes to thank the Department of Mathematics at UIC for kind hospitality, and particularly Julius Ross for many helpful discussions related to this work. We are grateful to Julien Keller and Vestislav Apostolov for some useful comments on an earlier version of these results. We are very grateful to the reviewer for the valuable suggestions, in particular regarding our stability result, Theorem 1.7. We would also like to thank all the participants in the Kähler geometry seminars at IGAP, Trieste.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Scarpa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scarpa, C., Stoppa, J. The HcscK equations in symplectic coordinates. Math. Z. 301, 75–113 (2022). https://doi.org/10.1007/s00209-021-02902-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-021-02902-8

Keywords

Mathematics Subject Classification

Navigation